
 1

TOP-DOWN VS. BOTTOM-UP NEUROCOMPUTER DESIGN

JOSEPH T. WUNDERLICH
Elizabethtown College Computer Engineering Program

Elizabethtown, Pennsylvania, USA

Abstract - Artificial neural networks are a form of connectionist architecture
where many simple computational nodes are connected in a fashion similar to
that of biological brains for the purpose of solving problems that require rapid
adaptation or where underlying governing equations are not known or cannot
be easily computed. This paper first discusses the use of various computer
platforms for neurocomputer implementation. Two designs are then presented:
(1) An artificial dendritic tree “bottom-up” VLSI chip; and (2) A vector-
register microprocessor “top-down” design with on-chip learning and a fully-
parallel, entirely-digital implementation.

INTRODUCTION
 A discussion of machine intelligence types is a good place to begin a neurocomputer
design process. Machine intelligence includes both “symbolic” AI and artificial neural
networks. Symbolic AI programs use heuristics, inference, hypothesis testing, and forms
of knowledge representation to solve problems. This includes “Expert Systems” and
programming languages such as Prolog or LISP, with knowledge contained in logic,
algorithms, and data structures. A neural network (NN) is a form of connectionist
computer architecture (hardware or software) where many simple computational nodes
are connected in an architecture similar to that of a biological brain. Neurocomputers
implement NN’s [1]-[3], [5]-[9]. A first step in designing a neurocomputer is choosing an
architecture that is either structurally similar to, or merely produces results in a similar
fashion to the human brain (i.e., “bottom-up” vs. “top-down” design).
 Most NN’s are top-down

 The

 designs trained to react to external stimuli. They learn via
iterative mathematics to change inter-neuron connection strengths (weights) until outputs
converge to desired tolerances. The NN learns such that multiple input/desired-output
pairs are satisfied simultaneously; the final set of weights represents compromises made
to satisfy the constraints. Once trained, the NN can react to new stimuli (i.e., other than
the training-set). An implementation problem to consider is that the matrix and vector
calculations common to most NN’s are often run on von Neumann uniprocessor
machines with a “bottle-neck” forcing non-parallel computation. SMP (Symmetric Multi-
Processing) architectures improve performance; however the best machines for these
calculations are MPP (Massively Parallel Processing) or vector-register supercomputers;
or embedded, application-specific, highly parallel systems – especially those providing
learning in real-time. An all-digital vector-register NN processor (with on-chip learning)
is presented below.

bottom-up

 Predictions of when computer performance will reach that of the human brain often
employ Moore’s Law to predict computing speed or number of transistors per chip:

 approach is to build a system which functions like a biological brain at
the circuit-level. The artificial dendritic tree hybrid-analog/digital chip presented below is
an example of this [6], [7].

()Q QNEW OLD

n
=

2 1 5. (1)

where Qold is today’s computing speed (or chip density), and Qnew is computing speed (or
chip density) n years in the future (i.e., speed and chip density double every 18 months).

 2

Although this law remains valid to-date, it must eventually break down; in less than 100
years, assuming a present day Qold speed of 6Ghz and a chip density of 50 million
transistor per chip, Moore’s Law predicts a Qnew

 Multitasking is a significant part of NN’s where learning occurs between the many
simple computational nodes. If an MPP machine could be built with billions of nodes
(like the human brain), instead of just thousands (to-date), it could possibly implement an
NN to rival the functionality of the human brain. Vector-register architectures are also
well suited to the many parallel computations involved in the millions of “multiply-
accumulates” often required for even the simplest of NN training.

 that would require electricity to travel
through a transistor faster than the speed of light and more transistors on a chip than the
number of atoms that could fit in the volume of a typical computer “case.” This type of
prediction can also be misleading if the degree of parallel processing (and pre-processing)
that occurs in most biological brains is not considered. Multitasking manmade
subsystems as efficiently and elegantly as the human brain is a major undertaking. The
degree of parallelism (DOP) of the human brain is simply not found in PC’s,
workstations, or even mini-computers. Only in some supercomputers does parallelism
come close to what might be required [1]. Embedded systems could eventually achieve
these goals with many simple devices working independently; however embedded
systems often lack the computation power (and precision) of even the simplest PC [5]. A
comparison of computing platforms and their use for implementing machine intelligence
is shown in Table 1.

Table 1. Levels of computing and machine intelligence use.

LEVEL HARDWARE and DEVICES OOPPEERRAATTIINNGG
SSYYSSTTEEMM

MACHINE
INTELLIGENCE USE

Em-
bedded

MMiiccrrooccoonnttrroolllleerr:: ((IInntteell,,
MMoottoorroollaa,, PPIICC))
MMiiccrroopprroocceessssoorr:: ((IInntteell//AAMMDD,,
MMoottoorroollaa,, PPoowweerrPPCC))
Application Specific IC’s

TTyyppiiccaallllyy nnoonnee
oorr ccuussttoomm

Not typical for symbolic AI.
NN ASIC’s excellent for high-speed
real-time-learning NN applications.

PC Microprocessor (Intel/AMD,
PowerPC)

WWiinnddoowwss,,
DDOOSS,, MMAACC
OOSS,, BB,, LLiinnuuxx

Acceptable for NN simulations and
symbolic AI.

Work-
station

SSiilliiccoonn GGrraapphhiiccss ,, SSUUNN,, IIBBMM
RRSS66000000 wwiitthh mmuullttiippllee
MMiiccrroopprroocc’’ss ((MMIIPPSS,, SSPPAARRCC,,
IInntteell//AAMMDD,, PPoowweerrPPCC))

WWiinnddoowwss NNTT,,
UUNNIIXX,, AAIIXX

Good for NN simulations and
symbolic AI.

Mini-
Comp.

IIBBMM AASS440000,, AAmmddaahhll,, HHPP,,
HHiittaacchhii ((typically SMP

UUNNIIXX,, MMVVSS,,
VVMMSS,, OOSS 339900)

Good for NN simulations and
symbolic AI.

Super-
 Comp.

SSMMPP:: ((IIBBMM SS//339900))
MMPPPP:: ((IIBBMM SSPP22,, CCrraayy))
VVeeccttoorr--rreeggiisstteerr:: ((CCrraayy,, IIBBMM
SS//339900 ww//vveeccttoorr--rreeggiisstteerr uunniitt))

SSMMPP:: UUNNIIXX,,
MMVVSS,, OOSS 339900
MMPPPP:: ccuussttoomm
VVeeccttoorr

Very good for symbolic AI, NN
simulations, and real-time NN
learning.

::ccuussttoomm
MPP and Vector-register

especially good for NN’s.

DESIGN METHODOLOGY
 The following steps can be used for any engineering design [2]:

(a)
(b)

Define problem

(c)
Simplify

(d)
Find governing equations

(e)
Build

 Defining a problem includes creating or selecting the concepts to model, observe,
and/or derive. An assessment is made of data needed and mathematical tools required.
The “simplify” step involves making assumptions and considering different approaches.
The selection of hardware platforms and programming languages can significantly effect

Test and rebuild as needed

 3

the complexity, precision, and speed of both simulations and real-time systems. Finding
governing equations involves identifying fundamental principles and may require
deriving new equations. Different equation-solving techniques are considered; this may
include selecting a solution for the fastest real-time response. For simulations, the
selection and implementation of a solution may be more dependent on available
programming constructs and functions, or on a choice of available numerical techniques.
Care should be taken to ensure that the chosen approach does not cause discrepancies
between simulations and real-time systems. The "build" step involves fabricating devices
after simulating. Engineering of hardware and software may require real-time systems to
interactively communicate with a concurrently running simulation [4]. Testing (and
rebuilding as needed) involves verifying performance of hardware and software under
various operating scenarios. This includes hand-checking computations and assessing
resultant data for realistic results (e.g., order-of-magnitude checks). It can also involve
gathering empirical data from observing real-time system performance, then modifying a
simulation to create a more accurate model -- or possibly redesigning and rebuilding the
real-time system. Assumptions made during the "simplify" step may need to be
reconsidered.

NEUROCOMPUTER PROBLEM DEFINITION
 Two methods for designing neurocomputers are presented below. Both can be
classified as embedded systems. The first is a bottom-up design; an artificial dendritic
tree where biological brain function is modeled as RC analog circuit elements that
produce signals similar to those propagating through the dendritic tree inter-neuron
connections of the human brain. This approach is modeled after the concept shown in
Fig. 1. The second design is a top-down design that can process the vector and matrix
operations of a typical NN mathematical model; and although it is designed as an
embedded device, it has many of the design features of a vector-register supercomputer.
The “behavioral” model shown in Fig. 2 inspired this approach.

SIMPLIFICATIONS AND ASSUMPTIONS
 The bottom-up neurocomputer design is modeled and simplified by substituting analog
circuit transient responses for the electrochemical signals and activations that occur in
biological brain function. A design assumption is made that all neurons have fixed
connections to all other neurons so that learning can take place by strengthening or
weakening connections; the biological growing of new connections is mimicked by
electrical connections that are simply inactive until a new connection is desired. The
governing equation for the bottom-up neurocomputer presented here is based on the
theory in [7] and the biology in Fig. 1. This is modeled as shown in Fig.3.

STIMULI
FROM
ENVIRON-
MENT
AND
OTHER
NEURON
OUTPUTS

DENDRITIC
TREE

LEARN BY STRENGTHENING,
WEAKENING, AND
GROWING NEW CONNECTIONS

OUTPUT
TO
OTHER
NEURONS

Figure 1. Biological neuron for bottom-up
neurocomputer design.

Figure 2. Behavioral model for top-down
neurocomputer design.

ACTUAL
RESPONSE

ERROR

DESIRED
RESPONSE

LEARN BY
ADAPTING TO
MINIMIZE ERROR

S
T
I
M
U
L
I

NETWORK

NEURON

 4

and where neuron membrane voltage V(X,t) is found by solving:

R C V X t
t

R
R

V X t
X

V R I X tm m
m

a
m* * (,) * (,) * (,)∂

∂
∂

∂
= − +

2

2
 (2)

 The selection of a NN model for a top-down

(a) Backpropagation, (b) MADALINE III, (c) Hopfield, (d) BOLTZMANN MACHINE,

 neurocomputer implementation is made
here by analyzing historical advances in NN’s while keeping in mind the relative success
of models to be implemented in hardware or software. The following models were
considered [8]-[11]:

(e) BAM (Bi-directional Associative Memory), and (f) NEOCOGNITRON
 The relatively limited applications of the BAM and the NEOCOGNITRON eliminated
these two from consideration. The BOLTZMANN MACHINE was eliminated next since
the generalized delta rule of backpropagation is a faster learning algorithm for
multilayered NN’s [9]. Although there have been a number of successful applications of
the Hopfield model, the exhaustive connectivity between neurons is less desirable for a
single-chip implementation. MADALINE III and Backpropagation function in a similar
fashion, however backpropagation exhibits faster learning [10]. Backpropagation is
therefore the model chosen for implementation here. A backpropagation neurocomputer
chip can be implimented in several ways:

1. Discrete analog components for all computations [9], [13], [14].
2. Digital circuits for all computations except transfer function implemented as serial or

parallel analog circuits [9].
3. Digital circuits for all computations including transfer function implemented as serial or

parallel look-up tables [15].
4. Parallel vector-register digital circuits for all computations including a polynomial

approximation of the transfer function.
 The first two approaches rely on analog circuits that can suffer from a number of
limitations (e.g., drift, fabrication inconsistencies, conversion delays. etc.) [13], [14]; and
although methods have been proposed to somewhat compensate for these problems [14],
the approach chosen here is all-digital. The third approach, although entirely digital,
would require large on-chip memory to yield the precision required for parallel on-chip
learning; look-up table approaches often restrict transfer function computations to serial
(one neuron at a time) execution. They may also require learning to be done off-chip
with weights down-loaded onto the chip after learning completed. A technique to
improve this is proposed in [15] where a “Symmetric Table Addition Method” uses two
or more table lookups per transfer function evaluation. However the fourth approach
(using a polynomial approximation of the transfer function) is likely to scale better when
the architecture is expanded to thousands of neurons. This method is therefore chosen
here; and on-chip learning is accomplished by defining a new transfer function, the
"clipped-sigmoid,” which is non-linear over an input domain wide enough to allow the
generalized-delta, gradient-decent learning of backpropagation to work. Conversely, this
domain is narrow enough to allow the transfer function to be approximated with a
relatively high degree of precision; and since the approximation is a simple polynomial, it
is easily implemented in digital hardware. For any top-down neurocomputer design,

Vb

X
V(X,t)

Ra

Rm

Cm

Figure 3. Analog circuit representation [7] of biological model in Fig. 1.

Rm = Neuron membrane resistance
Cm = Neuron membrane capacitance
Ra = Serial axial cytoplasm resistance
Vb = Resting neuron membrane voltage
V(X,t) = Neuron membrane voltage at
 location X and time t as a
 result of a current density I(X,t)

 5

assumptions must be made for the magnitudes and precision needed for weights.
Hardware can be simplified by designing the NN to have the minimum required
computational precision [2]. It’s important to recognize that greater precision is needed
for evaluation of each neuron transfer function during training [15], [16].

GOVERNING EQUATIONS
 The governing equation for the bottom-up neurocomputer design presented here is
based on the theory in [7]. This implementation is shown in Fig 4. and is represented by
equation (2) above. The field effect transistors (FET’s) in Fig. 4 act to inhibit or stimulate
by pulling the effected node down to the Inhibitory voltage (i.e., VI=GND=0volts) or up to
the Excitation voltage (i.e., VE >Vb

).

 The architecture for the top-down

 backpropagation neurocomputer design is shown in
Fig. 5 including exemplars (i.e., desired outputs paired with corresponding inputs) for the
simple XOR. Here, NN learning involves repeatedly feeding the network exemplars; each
time changing weights as a function of a backpropagated error between the desired output
and the actual output, until the approximate desired outputs are observed [10], [11]. This
is performed as follows:
1. Choose small random initial values for weights (W's), and choose BIAS’ (typically set to 1).
2. Feed the input layer an input vector (X1, X2

3. Propagate the signals forward via non-linear neuron transfer functions (i.e., “sigmoids”):
) from an exemplar.

∑
+

=
−+−

i
ijijBIAS WOWjBIASj

e
O

)*()*(

1

1
 (3)

∑
+

=
−+−

j
jkjkBIAS WOWkBIASk

e
O

)*()*(

1

1
 (4)

4. Create an error signal from the difference between actual and desired output for the exemplar,
and use it to change the weights between the output layer (k) and the hidden layer (j), and also
between the output neuron and bias:

Figure 4. Analog circuit for
“bottom-up” design [7].

Vout

 VI

VE

BRANCH

Ra

Rm

Cm

Ra

Rm

Cm

Vb

BRANCH

Figure 5. Layered neural network for “top-down” design.

Input/Output Exemplars

 X1

X2

Desired
 Output
 (dk)

 0 0 0
 0 1 1
 1 0 1
 1 1 0

Output Layer (k)

Hidden Layer (j)

Input Layer (i)

Actual
Output
 Ok

Oi=Ob=X2

Oj= Od

Oj =Oc

WeBIAS

Wde

Wce

e BIAS

d BIAS

c BIAS

WdBIAS

WcBIAS

Wbd

Wad

Wbc

Wac

e

d

c

b

a X1

X2

Oi=Oa=X1

Rm = Neuron membrane resistance
Cm = Neuron membrane capacitance
Ra = Serial axial cytoplasm resistance
Vb = Resting neuron membrane
 voltage
VE = Excitation voltage (i.e., VE >Vb)
VI = Inhibitory voltage (i.e., VI=GND)

 6

()[] jkkkkjk OOOOdW *)1(*** −−=∆ η (5)

()[] kBIASOOOdW kkkkkBIAS *)1(*** −−=∆ η (6)
where η is the learning rate (typically set between 0.01 and 1).

5. Backpropagate a weighted error signal from the hidden layer (j) to the input layer (i) and use it
to change the weights between the hidden layer (j) and the input layer (i), and also between the
hidden layer neurons and bias':

() ()[] i

k
jkkkkkjjij OWOOOdOOW **)1(***)1(** ∑ −−−=∆ η (7)

() ()[] jBIASWOOOdOOW
k

jkkkkkjjjBIAS **)1(***)1(** ∑ −−−=∆ η (8)

6. Repeat steps 2 to 5 for each exemplar.
7. Repeat steps 2 to 6 until desired outputs have been approximately obtained (i.e., within a

specified tolerance).
 The neuron transfer function presented here is a polynomial approximation that can be
easily implemented using parallel vector-register digital circuits. In preliminary research,
the polynomial chosen was a Taylor approximation expanded about a point f(x0

P x f x f x x f x x x f x x x
nTaylor

n
n

() () () () ()
!

......... () ()
!

= + ′ − + ′′
−

+ +

−

0 0 0

0
2

0
0

2

)=0 [8].
The Taylor polynomial approximation of any function f(x) is given by:

 (9)

 where P(x0) = f(x0

Error f x P x x x f x
nTaylor Taylor

n
n

= − = −
+

+
+

() () () (())
()!

()
()

0
1

1

1
ξ

), and where the error for all other x points is:

 (10)

for some number ξ(x) between x and x0
 The error for a 15

[17].
th degree Taylor polynomial approximation of the sigmoid neuron

transfer function of equation (3) for (x0=0) is shown in figures 6 and 7. Large
approximation errors are encountered for (X < -2.5) and (X > 2.5). Through experiment,
a better approximation was found to be a 10th degree Taylor polynomial approximation of
the e- x

 part of the sigmoid; this results in a good approximation of the sigmoid for (-3.5 >
X < 3.5) as shown in Fig. 7. This approximation is termed the “Clipped Sigmoid” and
yields sufficient accuracy to allow learning to occur; however certain network
initializations need to be specified.

Figure 6. Neuron output for Taylor polynomial approximations of sigmoid: 1/(1+e^-x) expanded
about x = 0.

-1

0.4

1

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
NEURON INPUT

Sigmoid
7th degree polynomial
9th degree polynomial
11th degree polynomial
13th degree polynomial
15th degree polynomial

 7

 The initial research of [8] is extended here to include more precise polynomial
approximations of the sigmoid (and an initial hardware implementation using FPGA’s).
The approximation techniques considered are: (a) Cubic Spline Polynomial, (b) Hermite
Polynomial, and (c) Divided-Difference Polynomial
 Cubic Spline is eliminated from further consideration since it is “piecewise” requiring
different polynomials for different parts of the input domain. This would require each
neuron computation to include a check for input values before applying one of several
polynomial approximations. The remaining approaches are better suited for a fully
parallel implementation; and will scale better to thousands of neurons.
 A (2n + 1) degree Hermite polynomial approximation of a function f(x) with points
evaluated at (x0 , x1 , . . . , xn)

P x f x H x f x H xHermite
j

n

n j n j
j o

n

() () () () (), ,= + ′
= =
∑ ∑

0

is given in [17] by:

 (11)

where ()[]H x x x L x L xn j j n j j n j, , ,() () ()= − − ′1 2 2 (12)

() () (), ,H x x x L xn j j n j= − 2 (13)

()
()L x

x x
x xn j

i

j ii
i j

n

, () =
−

−=
≠

∏
0

 (14)

()
Error f x P x

x x

n
fHermite Hermite

i
i

n

n= − =
−

+

= +
∏

() ()
()!

()()

2

0 2 2

2 2
ξ (15)

for some number between adjacent points in (x0 , x1 , . . . , xn). This Polynomial is shown
approximating f(x)=(”sigmoid” of equation (3)) in figures 8 and 9. Here, a 12th

 degree
Hermite polynomial yields a relatively good approximation for (–3.5 > X < 3.5).

with error:

Figure 7. Error for Taylor series polynomial approximations of sigmoid: 1/(1+e^-x).

-0.6

0

0.6

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
NEURON INPUT

15th degree approximation of
sigmoid

1/(1+e^-x) with 10th degree
 approximation of e^-x

ERROR

 8

 An nth degree Divided Difference polynomial approximation of any function f(x) with
points evaluated at (x0 , x1 , . . . , xn)

() ()()
()() ()

P x a a x x a x x x x

a x x x x x x
DivDiff

n n

() = + − + − − +

+ − − − −

0 1 0 2 0 1

0 1 1

is given in [17] by:

 (16)

where

 [] ()a f x f x0 0 0= = (17)

 [] [] []
()

a f x x
f x f x

x x1 0 1
1 0

1 0

= =
−
−

, (18)

[] [] []
()

()
()()

()
()()

()
()()

a f x x x
f x x f x x

x x x x
f x f x

x x
f x

x x

f x
x x x x

f x
x x x x

f x
x x x x

2 0 1 2
1 2 0 1

2 0 2 0

2 0

2 1

2

1 0

0

0 1 0 2

1

1 0 1 2

2

2 0 2 1

1
= =

−
−

=
−

−
−

−
−

=
− −

+
− −

+
− −

, ,
, , () () ()

 (19)

Figure 8. Neuron output for Hermite polynomial approximations of sigmoid: 1/(1+e^-x) with
evaluation points at x = [-6 to +6] at 0.25 intervals.

-0.6

1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
NEURON INPUT

Sigmoid
9th degree polynomial
10th degree polynomial
11th degree polynomial
12th degree polynomial
13th degree polynomial

Figure 9. Error for 12th and 13th degree Hermite polynomial approximation of sigmoid: 1/(1+e^-x).

-0.25

-0.1

0

0.1

0.25

-6 -4.5 -3 -1.5 0 1.5 3 4.5
NEURON INPUT

12th degree polynomial
13th degree polynomial

 9

[]
()

() ()
()

() ()
()

()()

a f x x x

f x
x x x x

f x
x x x x

f x
x x x x

n n

n n

n

n n n

=

=
− −

+
− −

+ +
− − −

0 1

0

0 1 0

1

1 0 1 0 1

, ,

 (20)

 Divided-Difference polynomial approximations of the sigmoid are shown in figures 10
and 11, and provide the best approximations here (i.e., best precision over the widest
domain of input values). Two 12th

 degree Divided Difference polynomial approximations
are shown in Fig. 11; one with evaluation points over an X domain from –6 to 6; the
other from –10 to 10. The second one yields an approximating error of (0.01) over a
relatively wide domain and is the polynomial chosen for implinentation.

Figure 10. Neuron output with Divided-Difference polynomial approximations of sigmoid:
 1/(1+e^-x) with evaluation points at x = [- 6, - 5, - 4, - 3, - 2, - 1, -0. 5, 0.5, 1, 2, 3, 4, 5, 6]

-0.4

1

1.4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
NEURON INPUT

SIGMOID
9th degree polynomial
10th degree polynomial
11th degree polynomial
12th degree polynomial
13th degree polynomial

Figure 11. Approximation error for 12th degree Divided-Difference polynomial approximations
of sigmoid: 1/(1+e^-x)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
NEURON INPUT

Evaluation points: x = [-10 ,-9.2, -7.65, -6.3, -4, -1.9, 0, 1.9, 4, 6.3, 7.65, 9.2, 10]
 Evaluation points: x = [- 6, - 5,- 4, - 3, - 2, - 1, - 0. 5, 0.5, 1, 2, 3, 4, 5, 6]

 10

 To validate this choice, all two-input logic gates were simulated. Tests included
evaluating the effect of clipping the standard sigmoid (i.e., no polynomial approximation)
which even improved learning for some cases. In Fig. 12, the Divided-Diffence
polynomial sigmoid approximation is shown to allow successful learning. This XOR
simulation is clipped at -5.25 > X < 5.25 to show the robostness of the method (i.e., it
also works with a domain of –10 > X < 10).

BUILDING AND TESTING
 The bottom-up design in Fig. 13 is an artificial dendritic tree VLSI chip. It has 64
neurons and combines the analog circuits of Fig. 4 with digital circuits to latch in 4-bit
values allowing each node to be excited or inhibited for 16 different “pulse-lengths.” The
chip has the equivalent of 10,000 transistors on a 2mm x 2mm die [6].

Figure 13. Bottom-up neurocomputer
(artificial dendritic tree VLSI chip).

Figure 12. Backpropagation learning using 12th degree Divided-Difference polynomial
approximation of sigmoid, and “clipping” outside of domain –5.25 >X <5.25.

Figure 14. Field programmable gate array (FPGA) for
top-down neurocomputer development.

 11

 This chip was fabricated and bench-tested by latching in various pulse-length values,
then measuring outputs for desired transient output voltage responses.
 The top-down

 neurocomputer design is presently under development using the Field
Programmable Gate Array (FPGA) shown in Fig. 14. Testing any digital circuit
implementation (FPGA, discrete IC chips, VLSI, etc.), or even an analog circuit
implementation of a backpropagation model, involves feeding the network each exemplar
after training is completed to verify desired outputs are obtained. This can be followed by
testing never-seen inputs. Testing complex NN hardware can also involve developing
verification programs for both simulated and physical prototype architectures [18].

CONCLUSIONS
 The top-down

 Even though the semiconductor industry continues to increase the number of
transistors per unit area, the chip-area required to include the neurons needed for a

 design presented here can process the mathematics of the well-known
backpropagation NN model; and although designed as an embedded device, it has an
architecture similar to a vector-register supercomputer. This design is entirely digital,
fully parallel, and implements a polynomial approximation of the sigmoid transfer
function to allow parallel on-chip learning.

bottom-up

 Future research will investigate merging bottom-up techniques for pre-processing
sensory data (e.g., visual, auditory, olfactory) with top-down techniques for higher
reasoning; including combining neural networks with symbolic AI programming.

 neurocomputer to produce useful higher-reasoning would need to be much
larger than a typical chip. Biological brains have the advantage of being three-
dimensional whereas integrated circuits are mostly two-dimensional (despite multiple
levels of layerization). Another problem is connecting all of these neurons since wire
routing would be in mostly two dimensions. Even with several layers of metallization (for
wires), it would be very difficult to connect all neurons (with each potentially connected
to all others). Perhaps the most difficult problem to overcome in mimicking biological
learning is that inter-neuron connections are not only strengthened or weakened, but are
grown. Wires on chips are fixed, and considering the required extensive connectivity
between neurons, useful bottom-up designs can be difficult to realize.

References

[1] J. T. Wunderlich, " Defining the limits of machine intelligence,” in Proc. of IEEE SECon 2003

Nat'l Conf., Ocho Rios, Jamaica, 2003.
[2] J. T. Wunderlich, "Simulation vs. real-time control; with applications to robotics and neural

networks," in Proc. of ASEE Nat'l Conf., Albuquerque, NM, 2001.
[3] Seiffert, U., “Artificial neural networks on massively parallel computer hardware,” in Proc.

ESANN 2002 European Symposium on Artificial Neural Networks, Bruges, Belgium, 2002.
[4] Campos, D. and Wunderlich, J. T., "Development of an interactive simulation with real-time

robots for search and rescue," in Proc. of IEEE/ASME Int'l Conf. on Flexible Manufacturing,
Hiroshima, Japan, 2002.

[5] Wunderlich, J. T., “Focusing on the blurry distinction between microprocessors and
microcontrollers,” in Proc. of ASEE Nat'l Conf., 1999, Charlotte, NC.

[6] J. T. Wunderlich, et al., “Design of an artificial dendritic tree VLSI microprocessor,”
University of Delaware research report, 1993.

[7] Elias, J. G., "Artificial dendritic trees," Neural Computation, vol. 5, pp. 648-663, 1993.
[8] Wunderlich, J. T., “Design of a Neurocomputer Vector Microprocessor (with on-chip

learning),” Masters thesis, Pennsylvania State University, Jan. 1992.
[9] Soucek, B., “Neural and Concurrent Real-Time Systems, The Sixth Generation.” New York:

John Wiley & Sons, 1989.
[10] Widrow, B., “30 years of adaptive neural networks: perceptron, madaline, and

backpropagation,” in Proc. 2nd IEEE Intl. Conf. on Neural Networks, 1990.

 12

[11] Rumelhart, D.E., and McClelland, J. L., “Parallel Distributed Processing.” Cambridge, MA:
M.I.T. Press, 1986.

[12] Mirhassani, M., Ahmadi, M., Miller, M. C., “A mixed-signal VLSI neural network with on-
chip learning,” in Proc. of the 2003 IEEE Canadian Conference on Electrical and Computer
Engineering, 2003.

[13] Liu, J., and Brooke, M., “Fully parallel on-chip learning hardware neural network for real-time
control,” in Proc. IEEE International Symposium on in Circuits and Systems, 1999.

[14] Card, H. C., McNeill, D. K., and Schneider, R. S., “How forgiving is on-chip learning of
circuit variations?,” in Proc. of the 5th Irish Neural Networks Conference, Maynooth, Ireland,
1995.

[15] Nihal, K. S., Schlessman, J. A., and Schulte, M. J., “Symmetric table methods for neural
network approximations,” in Proc. SPIE: Advanced Signal Processing Algorithms,
Architectures, and Implementations XI, San Diego, CA., 2001.

[16] Beiu, V., “How to build VLSI-efficient neural chips,” in Proc. ICSC Symp. On Engineering
Intelligent Systems, Tenerife, Spain, 1998.

[17] Burden, R. L., and Faires, J. D., “Numerical Analysis,” Brooks Cole publishing, 7 ed., 2000.
[18] Wunderlich, J. T., “Random number generator macros for the system assurance kernel product

assurance macro interface,” Systems Programmers User Manual for IBM S/390 Systems
Architect ure Verification, IBM S/390 Hardware Development Lab, Poughkeepsie, NY, 1997.

JOSEPH T. WUNDERLICH
Dr. Wunderlich is the primary Computer Engineering Program Coordinator for Elizabethtown
College. Previously, he worked for Purdue University as an Assistant Professor and for IBM as a
researcher and hardware development engineer. He received his Ph.D. in Electrical and Computer
Engineering from the University of Delaware, his Masters in Engineering Science/Computer Design
from the Pennsylvania State University and his BS in Engineering from the University of Texas at
Austin.

	JOSEPH T. WUNDERLICH
	Elizabethtown College Computer Engineering Program
	LEVEL
	HARDWARE and DEVICES
	MACHINE
	NEUROCOMPUTER PROBLEM DEFINITION
	SIMPLIFICATIONS AND ASSUMPTIONS
	GOVERNING EQUATIONS
	BUILDING AND TESTING
	CONCLUSIONS
	References

