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Abstract - Artificial neural networks are a form of connectionist architecture 
where many simple computational nodes are connected in a fashion similar to 
that of biological brains for the purpose of solving problems that require rapid 
adaptation or where underlying governing equations are not known or cannot 
be easily computed. This paper first discusses the use of various computer 
platforms for neurocomputer implementation. Two designs are then presented: 
(1) An artificial dendritic tree “bottom-up” VLSI chip; and (2) A vector-
register microprocessor “top-down” design with on-chip learning and a fully-
parallel, entirely-digital implementation. 

 
 
INTRODUCTION 
    A discussion of machine intelligence types is a good place to begin a neurocomputer 
design process. Machine intelligence includes both “symbolic” AI and artificial neural 
networks. Symbolic AI programs use heuristics, inference, hypothesis testing, and forms 
of knowledge representation to solve problems. This includes “Expert Systems” and 
programming languages such as Prolog or LISP, with knowledge contained in logic, 
algorithms, and data structures. A neural network (NN) is a form of connectionist 
computer architecture (hardware or software) where many simple computational nodes 
are connected in an architecture similar to that of a biological brain. Neurocomputers 
implement NN’s [1]-[3], [5]-[9]. A first step in designing a neurocomputer is choosing an 
architecture that is either structurally similar to, or merely produces results in a similar 
fashion to the human brain (i.e., “bottom-up” vs. “top-down” design). 
    Most NN’s are top-down

    The 

 designs trained to react to external stimuli. They learn via 
iterative mathematics to change inter-neuron connection strengths (weights) until outputs 
converge to desired tolerances. The NN learns such that multiple input/desired-output 
pairs are satisfied simultaneously; the final set of weights represents compromises made 
to satisfy the constraints.  Once trained, the NN can react to new stimuli (i.e., other than 
the training-set). An implementation problem to consider is that the matrix and vector 
calculations common to most NN’s are often run on von Neumann uniprocessor 
machines with a “bottle-neck” forcing non-parallel computation. SMP (Symmetric Multi-
Processing) architectures improve performance; however the best machines for these 
calculations are MPP (Massively Parallel Processing) or vector-register supercomputers; 
or embedded, application-specific, highly parallel systems – especially those providing 
learning in real-time. An all-digital vector-register NN processor (with on-chip learning) 
is presented below.  

bottom-up

    Predictions of when computer performance will reach that of the human brain often 
employ Moore’s Law to predict computing speed or number of transistors per chip: 

 approach is to build a system which functions like a biological brain at 
the circuit-level. The artificial dendritic tree hybrid-analog/digital chip presented below is 
an example of this [6], [7]. 

( )Q QNEW OLD

n
= 



2 1 5.                                              ( 1 ) 

where Qold is today’s computing speed (or chip density), and Qnew is computing speed (or 
chip density) n years in the future (i.e., speed and chip density double every 18 months). 
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Although this law remains valid to-date, it must eventually break down; in less than 100  
years, assuming a present day Qold speed of 6Ghz and a chip density of 50 million 
transistor per chip, Moore’s Law predicts a Qnew

    Multitasking is a significant part of NN’s where learning occurs between the many 
simple computational nodes. If an MPP machine could be built with billions of nodes 
(like the human brain), instead of just thousands (to-date), it could possibly implement an 
NN to rival the functionality of the human brain. Vector-register architectures are also 
well suited to the many parallel computations involved in the millions of  “multiply-
accumulates” often required for even the simplest of NN training.  

 that would require electricity to travel 
through a transistor faster than the speed of light and more transistors on a chip than the 
number of atoms that could fit in the volume of a typical computer “case.”  This type of 
prediction can also be misleading if the degree of parallel processing (and pre-processing) 
that occurs in most biological brains is not considered. Multitasking manmade 
subsystems as efficiently and elegantly as the human brain is a major undertaking. The 
degree of parallelism (DOP) of the human brain is simply not found in PC’s, 
workstations, or even mini-computers. Only in some supercomputers does parallelism 
come close to what might be required [1]. Embedded systems could eventually achieve 
these goals with many simple devices working independently; however embedded 
systems often lack the computation power (and precision) of even the simplest PC [5]. A 
comparison of computing platforms and their use for implementing machine intelligence 
is shown in Table 1. 

 
Table 1. Levels of computing and machine intelligence use. 

LEVEL HARDWARE and DEVICES OOPPEERRAATTIINNGG  
SSYYSSTTEEMM 

MACHINE 
INTELLIGENCE USE 

Em- 
bedded 

MMiiccrrooccoonnttrroolllleerr::  ((IInntteell,,  
MMoottoorroollaa,,  PPIICC))  
MMiiccrroopprroocceessssoorr::  ((IInntteell//AAMMDD,,  
MMoottoorroollaa,,  PPoowweerrPPCC))  
Application Specific IC’s 

TTyyppiiccaallllyy  nnoonnee  
oorr  ccuussttoomm 

Not typical for symbolic AI. 
NN ASIC’s excellent for high-speed 
real-time-learning NN applications. 

PC Microprocessor (Intel/AMD,  
PowerPC) 

WWiinnddoowwss,,  
DDOOSS,,  MMAACC  
OOSS,,  BB,,  LLiinnuuxx 

Acceptable for NN simulations and 
symbolic AI. 
 

Work- 
station 

SSiilliiccoonn  GGrraapphhiiccss  ,,  SSUUNN,,  IIBBMM  
RRSS66000000  wwiitthh  mmuullttiippllee  
MMiiccrroopprroocc’’ss  ((MMIIPPSS,,  SSPPAARRCC,,  
IInntteell//AAMMDD,,    PPoowweerrPPCC))   

WWiinnddoowwss  NNTT,,  
UUNNIIXX,,  AAIIXX  
 

Good for NN simulations and 
symbolic AI. 

Mini-
Comp. 
  

IIBBMM  AASS440000,,  AAmmddaahhll,,  HHPP,,  
HHiittaacchhii  ((typically SMP

UUNNIIXX,,  MMVVSS,,  
VVMMSS,,  OOSS  339900 ) 

Good for NN simulations and 
symbolic AI. 

Super- 
 Comp. 

SSMMPP::  ((IIBBMM  SS//339900))  
MMPPPP::  ((IIBBMM  SSPP22,,  CCrraayy))  
VVeeccttoorr--rreeggiisstteerr::  ((CCrraayy,,  IIBBMM  
SS//339900  ww//vveeccttoorr--rreeggiisstteerr  uunniitt)) 

SSMMPP::  UUNNIIXX,,  
MMVVSS,,  OOSS  339900  
MMPPPP::  ccuussttoomm    
VVeeccttoorr

Very good for symbolic AI, NN 
simulations, and real-time NN 
learning.  

::ccuussttoomm   
MPP and Vector-register

 

 
especially good for NN’s. 

DESIGN METHODOLOGY 
    The following steps can be used for any engineering design [2]: 

(a) 
(b) 

Define problem 

(c) 
Simplify 

(d) 
Find governing equations 

(e) 
Build 

    Defining a problem includes creating or selecting the concepts to model, observe, 
and/or derive. An assessment is made of data needed and mathematical tools required. 
The “simplify” step involves making assumptions and considering different approaches. 
The selection of hardware platforms and programming languages can significantly effect 

Test and rebuild as needed 
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the complexity, precision, and speed of both simulations and real-time systems.  Finding 
governing equations involves identifying fundamental principles and may require 
deriving new equations.  Different equation-solving techniques are considered; this may 
include selecting a solution for the fastest real-time response. For simulations, the 
selection and implementation of a solution may be more dependent on available 
programming constructs and functions, or on a choice of available numerical techniques. 
Care should be taken to ensure that the chosen approach does not cause discrepancies 
between simulations and real-time systems. The "build" step involves fabricating devices 
after simulating. Engineering of hardware and software may require real-time systems to 
interactively communicate with a concurrently running simulation [4]. Testing (and 
rebuilding as needed) involves verifying performance of hardware and software under 
various operating scenarios. This includes hand-checking computations and assessing 
resultant data for realistic results (e.g., order-of-magnitude checks). It can also involve 
gathering empirical data from observing real-time system performance, then modifying a 
simulation to create a more accurate model -- or possibly redesigning and rebuilding the 
real-time system. Assumptions made during the "simplify" step may need to be 
reconsidered. 
  
NEUROCOMPUTER PROBLEM DEFINITION 
    Two methods for designing neurocomputers are presented below. Both can be 
classified as embedded systems. The first is a bottom-up design; an artificial dendritic 
tree where biological brain function is modeled as RC analog circuit elements that 
produce signals similar to those propagating through the dendritic tree inter-neuron 
connections of the human brain. This approach is modeled after the concept shown in 
Fig. 1. The second design is a top-down design that can process the vector and matrix 
operations of a typical NN mathematical model; and although it is designed as an 
embedded device, it has many of the design features of a vector-register supercomputer. 
The “behavioral” model shown in Fig. 2 inspired this approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIMPLIFICATIONS AND ASSUMPTIONS 
    The bottom-up neurocomputer design is modeled and simplified by substituting analog 
circuit transient responses for the electrochemical signals and activations that occur in 
biological brain function. A design assumption is made that all neurons have fixed 
connections to all other neurons so that learning can take place by strengthening or 
weakening connections; the biological growing of new connections is mimicked by 
electrical connections that are simply inactive until a new connection is desired. The 
governing equation for the bottom-up neurocomputer presented here is based on the 
theory in [7] and the biology in Fig. 1. This is modeled as shown in Fig.3.  

STIMULI 
FROM 
ENVIRON- 
MENT 
AND  
OTHER 
NEURON 
OUTPUTS 

DENDRITIC 
TREE 

LEARN BY STRENGTHENING, 
WEAKENING, AND 
GROWING NEW CONNECTIONS 

OUTPUT 
TO 
OTHER 
NEURONS 

Figure 1. Biological neuron for bottom-up 
neurocomputer design. 

Figure 2. Behavioral model for top-down 
neurocomputer design. 
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and where neuron membrane voltage V(X,t) is found by solving: 

R C V X t
t

R
R

V X t
X

V R I X tm m
m

a
m* * ( , ) * ( , ) * ( , )∂

∂
∂

∂
= − +

2

2
                ( 2 ) 

    The selection of a NN model for a top-down

(a) Backpropagation, (b) MADALINE III, (c) Hopfield, (d) BOLTZMANN MACHINE, 

 neurocomputer implementation is made 
here by analyzing historical advances in NN’s while keeping in mind the relative success 
of models to be implemented in hardware or software. The following models were 
considered [8]-[11]:  

(e) BAM (Bi-directional Associative Memory), and (f) NEOCOGNITRON 
    The relatively limited applications of the BAM and the NEOCOGNITRON eliminated 
these two from consideration. The BOLTZMANN MACHINE was eliminated next since 
the generalized delta rule of backpropagation is a faster learning algorithm for 
multilayered NN’s [9]. Although there have been a number of successful applications of 
the Hopfield model, the exhaustive connectivity between neurons is less desirable for a 
single-chip implementation. MADALINE III and Backpropagation function in a similar 
fashion, however backpropagation exhibits faster learning [10]. Backpropagation is 
therefore the model chosen for implementation here. A backpropagation neurocomputer 
chip can be implimented in several ways: 

1. Discrete analog components for all computations [9], [13], [14]. 
2. Digital circuits for all computations except transfer function implemented as serial or 

parallel analog circuits [9]. 
3. Digital circuits for all computations including transfer function implemented as serial or 

parallel look-up tables [15]. 
4. Parallel vector-register digital circuits for all computations including a polynomial 

approximation of the transfer function. 
    The first two approaches rely on analog circuits that can suffer from a number of 
limitations (e.g., drift, fabrication inconsistencies, conversion delays. etc.) [13], [14]; and 
although methods have been proposed to somewhat compensate for these problems [14], 
the approach chosen here is all-digital. The third approach, although entirely digital, 
would require large on-chip memory to yield the precision required for parallel on-chip 
learning; look-up table approaches often restrict transfer function computations to serial 
(one neuron at a time) execution.  They may also require learning to be done off-chip 
with weights down-loaded onto the chip after learning completed. A technique to 
improve this is proposed in [15] where a “Symmetric Table Addition Method” uses two 
or more table lookups per transfer function evaluation. However the fourth approach 
(using a polynomial approximation of the transfer function) is likely to scale better when 
the architecture is expanded to thousands of neurons. This method is therefore chosen 
here; and on-chip learning is accomplished by defining a new transfer function, the 
"clipped-sigmoid,” which is non-linear over an input domain wide enough to allow the 
generalized-delta, gradient-decent learning of backpropagation to work.  Conversely, this 
domain is narrow enough to allow the transfer function to be approximated with a 
relatively high degree of precision; and since the approximation is a simple polynomial, it 
is easily implemented in digital hardware. For any top-down neurocomputer design, 

Vb 

X 
V(X,t) 

Ra 

Rm 

Cm 

Figure 3. Analog circuit representation [7] of biological model in Fig. 1.  

Rm = Neuron membrane resistance 
Cm = Neuron membrane capacitance 
Ra = Serial axial cytoplasm resistance 
Vb = Resting neuron membrane voltage 
V(X,t) = Neuron membrane voltage at 
              location X and time t as a 
              result of a current density I(X,t) 
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assumptions must be made for the magnitudes and precision needed for weights. 
Hardware can be simplified by designing the NN to have the minimum required 
computational precision [2]. It’s important to recognize that greater precision is needed 
for evaluation of each neuron transfer function during training [15], [16].   
 
GOVERNING EQUATIONS  
    The governing equation for the bottom-up neurocomputer design presented here is 
based on the theory in [7]. This implementation is shown in Fig 4. and is represented by 
equation (2) above. The field effect transistors (FET’s) in Fig. 4 act to inhibit or stimulate 
by pulling the effected node down to the Inhibitory voltage  (i.e., VI=GND=0volts) or up to 
the Excitation voltage (i.e., VE >Vb

 
). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
   
    The architecture for the top-down

  

 backpropagation neurocomputer design is shown in 
Fig. 5 including exemplars (i.e., desired outputs paired with corresponding inputs) for the 
simple XOR. Here, NN learning involves repeatedly feeding the network exemplars; each 
time changing weights as a function of a backpropagated error between the desired output 
and the actual output, until the approximate desired outputs are observed [10], [11]. This 
is performed as follows: 
1. Choose small random initial values for weights (W's), and choose BIAS’ (typically set to 1). 
2. Feed the input layer an input vector (X1, X2

3. Propagate the signals forward via non-linear neuron transfer functions (i.e., “sigmoids”):  
) from an exemplar. 

∑
+

=
−+−

i
ijijBIAS WOWjBIASj

e
O

)*()*(

1

1
                             ( 3 ) 

∑
+

=
−+−

j
jkjkBIAS WOWkBIASk

e
O

)*()*(

1

1
                               ( 4 ) 

4. Create an error signal from the difference between actual and desired output for the exemplar, 
and use it to change the weights between the output layer (k) and the hidden layer (j), and also 
between the output neuron and bias: 

Figure 4. Analog circuit for  
“bottom-up” design [7]. 

Vout 
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Figure 5. Layered neural  network for “top-down” design. 

Input/Output Exemplars 

 X1 
 

X2 
 

Desired 
 Output 
    (dk) 

 0  0     0 
 0  1     1 
 1  0     1 
 1  1     0 

 

Output Layer ( k ) 
 

Hidden Layer ( j ) 
 

Input Layer ( i ) 

Actual 
Output 
 Ok 

Oi=Ob=X2 

 

Oj= Od 

Oj =Oc 

WeBIAS 

Wde 

Wce 

e BIAS 

d BIAS 

c BIAS 

WdBIAS 

WcBIAS 

Wbd 

Wad 

Wbc 

Wac 

e 

d 

c 

b 

a X1 

X2 

Oi=Oa=X1 

 
Rm = Neuron membrane resistance 
Cm = Neuron membrane capacitance 
Ra = Serial axial cytoplasm resistance 
Vb = Resting neuron membrane 
        voltage 
VE = Excitation voltage (i.e., VE >Vb) 
VI  = Inhibitory voltage (i.e., VI=GND) 
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( )[ ] jkkkkjk OOOOdW *)1(*** −−=∆ η                       ( 5 ) 

( )[ ] kBIASOOOdW kkkkkBIAS *)1(*** −−=∆ η                  ( 6 ) 
where η is the learning rate (typically set between 0.01 and 1). 

5. Backpropagate a weighted error signal from the hidden layer (j) to the input layer (i) and use it 
to change the weights between the hidden layer (j) and the input layer (i), and also between the 
hidden layer neurons and bias':  

 
( ) ( )[ ] i

k
jkkkkkjjij OWOOOdOOW **)1(***)1(** ∑ −−−=∆ η            ( 7 ) 

( ) ( )[ ] jBIASWOOOdOOW
k

jkkkkkjjjBIAS **)1(***)1(** ∑ −−−=∆ η          ( 8 ) 

6. Repeat steps 2 to 5 for each exemplar. 
7. Repeat steps 2 to 6 until desired outputs have been approximately obtained (i.e., within a 

specified tolerance). 
    The  neuron transfer function presented here is a polynomial approximation that can be 
easily implemented using parallel vector-register digital circuits. In preliminary research, 
the polynomial chosen was a Taylor approximation expanded about a point f(x0

P x f x f x x f x x x f x x x
nTaylor

n
n

( ) ( ) ( ) ( ) ( )
!

......... ( ) ( )
!

= + ′ − + ′′
−







+ +

−







0 0 0

0
2

0
0

2

)=0 [8].  
The Taylor polynomial approximation of any function f(x) is given by: 

     ( 9 ) 

 where P(x0) = f(x0

Error f x P x x x f x
nTaylor Taylor

n
n

= − = −
+











+
+

( ) ( ) ( ) ( ( ))
( )!

( )
( )

0
1

1

1
ξ

), and where the error for all other x points is: 

              ( 10 ) 

for some number ξ(x) between x and x0  
    The error for a 15

[17]. 
th degree Taylor polynomial approximation of the sigmoid neuron 

transfer function of equation (3) for (x0=0) is shown in figures 6 and 7. Large 
approximation errors are encountered for (X < -2.5) and (X > 2.5). Through experiment, 
a better approximation was found to be a 10th degree Taylor polynomial approximation of 
the e- x

  

 part of the sigmoid; this results in a good approximation of the sigmoid for (-3.5 > 
X < 3.5) as shown in Fig. 7. This approximation is termed the “Clipped Sigmoid” and 
yields sufficient accuracy to allow learning to occur; however certain network 
initializations need to be specified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.  Neuron output for Taylor polynomial approximations of sigmoid: 1/(1+e^-x) expanded 
about x = 0. 
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    The initial research of [8] is extended here to include more precise polynomial 
approximations of the sigmoid (and an initial hardware implementation using FPGA’s). 
The approximation techniques considered are: (a) Cubic Spline Polynomial, (b) Hermite 
Polynomial, and (c) Divided-Difference Polynomial 
    Cubic Spline is eliminated from further consideration since it is “piecewise” requiring 
different polynomials for different parts of the input domain. This would require each 
neuron computation to include a check for input values before applying one of several 
polynomial approximations. The remaining approaches are better suited for a fully 
parallel implementation; and will scale better to thousands of neurons. 
    A (2n + 1) degree Hermite polynomial approximation of a function f(x) with points 
evaluated at (x0 , x1 ,  . . . , xn) 

P x f x H x f x H xHermite
j

n

n j n j
j o

n

( ) ( ) ( ) ( )  ( ), ,= + ′
= =
∑ ∑

0

is given in [17] by: 

                    ( 11 ) 

where    ( )[ ]H x x x L x L xn j j n j j n j, , ,( ) ( ) ( )= − − ′1 2 2                                ( 12 ) 

( ) ( ) ( ), ,H x x x L xn j j n j= − 2                                                    ( 13 ) 

 
( )
( )L x

x x
x xn j

i

j ii
i j

n

, ( ) =
−

−=
≠

∏
0

                                                        ( 14 ) 

( )
Error f x P x

x x

n
fHermite Hermite

i
i

n

n= − =
−

+



















= +
∏

( ) ( )
( )!

( )( )

2

0 2 2

2 2
ξ      ( 15 ) 

for some number between adjacent points in (x0 , x1 ,  . . . , xn).  This Polynomial is shown 
approximating f(x)=(”sigmoid” of equation (3)) in figures 8 and 9.  Here, a 12th

 

 degree 
Hermite polynomial yields a relatively good approximation for (–3.5 > X < 3.5). 

 

with error: 
 

Figure 7.  Error for Taylor series polynomial approximations of sigmoid: 1/(1+e^-x). 
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    An nth degree Divided Difference polynomial approximation of any function  f(x) with 
points evaluated at (x0 , x1 ,  . . . , xn) 

( ) ( )( )
( )( ) ( )

P x a a x x a x x x x

a x x x x x x
DivDiff

n n

( ) = + − + − − +

+ − − − −

0 1 0 2 0 1

0 1 1 

is given in [17] by: 

            ( 16 )                                 

where   

            [ ] ( )a f x f x0 0 0= =                                                                         ( 17 ) 

              [ ] [ ] [ ]
( )

a f x x
f x f x

x x1 0 1
1 0

1 0

= =
−
−

,                                                ( 18 ) 

[ ] [ ] [ ]
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( )( )
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a f x x x
f x x f x x

x x x x
f x f x

x x
f x

x x

f x
x x x x

f x
x x x x

f x
x x x x

2 0 1 2
1 2 0 1

2 0 2 0

2 0

2 1

2

1 0

0

0 1 0 2

1

1 0 1 2

2

2 0 2 1

1
= =

−
−

=
−

−
−

−
−











=
− −

+
− −

+
− −

, ,
, , ( ) ( ) ( )

  ( 19 )        

                                               

Figure 8.  Neuron output for Hermite polynomial approximations of sigmoid: 1/(1+e^-x) with 
evaluation points at x = [-6 to +6] at 0.25 intervals. 
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Figure 9.  Error for 12th and 13th degree Hermite polynomial approximation of sigmoid: 1/(1+e^-x). 
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[ ]
( )

( ) ( )
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( ) ( )
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f x
x x x x

f x
x x x x
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+
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   ( 20 )  

    Divided-Difference polynomial approximations of the sigmoid are shown in figures 10 
and 11, and provide the best approximations here (i.e., best precision over the widest 
domain of input values). Two 12th

 

 degree Divided Difference polynomial approximations 
are shown in Fig. 11; one with evaluation points over an X domain from –6 to 6; the 
other from –10 to 10. The second one yields an approximating error of (0.01) over a 
relatively wide domain and is the polynomial chosen for implinentation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Neuron output with Divided-Difference polynomial approximations of sigmoid: 
 1/(1+e^-x) with evaluation points at x = [- 6, - 5, - 4, - 3, - 2, - 1, -0. 5, 0.5, 1, 2, 3, 4, 5, 6 ]  
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Figure 11.  Approximation error for 12th degree Divided-Difference polynomial approximations 
of sigmoid: 1/(1+e^-x) 
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    To validate this choice, all two-input logic gates were simulated. Tests included 
evaluating the effect of clipping the standard sigmoid (i.e., no polynomial approximation) 
which even improved learning for some cases. In Fig. 12, the Divided-Diffence 
polynomial sigmoid approximation is shown to allow successful learning. This XOR 
simulation is clipped at  -5.25 >  X < 5.25 to show the robostness of the method (i.e., it 
also works with a domain of  –10 > X < 10).  

 
 
 
BUILDING AND TESTING 
    The bottom-up design in Fig. 13 is an artificial dendritic tree VLSI chip. It has 64 
neurons and combines the analog circuits of Fig. 4 with digital circuits to latch in 4-bit 
values allowing each node to be excited or inhibited for 16 different “pulse-lengths.”  The 
chip has the equivalent of 10,000 transistors on a 2mm x 2mm die [6]. 

              
 
 
Figure 13.  Bottom-up neurocomputer 
(artificial dendritic tree VLSI chip). 

 

Figure 12. Backpropagation learning using 12th degree Divided-Difference polynomial 
approximation of sigmoid, and “clipping” outside of domain –5.25 >X <5.25. 

Figure 14. Field programmable gate array (FPGA) for 
top-down neurocomputer development.  
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    This chip was fabricated and bench-tested by latching in various pulse-length values, 
then measuring outputs for desired transient output voltage responses. 
    The top-down

 

 neurocomputer design is presently under development using the Field 
Programmable Gate Array (FPGA) shown in Fig. 14. Testing any digital circuit 
implementation (FPGA, discrete IC chips, VLSI, etc.), or even an analog circuit 
implementation of a backpropagation model, involves feeding the network each exemplar 
after training is completed to verify desired outputs are obtained. This can be followed by 
testing never-seen inputs. Testing complex NN hardware can also involve developing 
verification programs for both simulated and physical prototype architectures [18].  

CONCLUSIONS 
    The top-down

    Even though the semiconductor industry continues to increase the number of 
transistors per unit area, the chip-area required to include the neurons needed for a 

 design presented here can process the mathematics of the well-known 
backpropagation NN model; and although designed as an embedded device, it has an 
architecture similar to a vector-register supercomputer. This design is entirely digital, 
fully parallel, and implements a polynomial approximation of the sigmoid transfer 
function to allow parallel on-chip learning. 

bottom-up

    Future research will investigate merging bottom-up techniques for pre-processing 
sensory data (e.g., visual, auditory, olfactory) with top-down techniques for higher 
reasoning; including combining neural networks with symbolic AI programming. 

 neurocomputer to produce useful higher-reasoning would need to be much 
larger than a typical chip.  Biological brains have the advantage of being three-
dimensional whereas integrated circuits are mostly two-dimensional (despite multiple 
levels of layerization). Another problem is connecting all of these neurons since wire 
routing would be in mostly two dimensions. Even with several layers of metallization (for 
wires), it would be very difficult to connect all neurons (with each potentially connected 
to all others). Perhaps the most difficult problem to overcome in mimicking biological 
learning is that inter-neuron connections are not only strengthened or weakened, but are 
grown. Wires on chips are fixed, and considering the required extensive connectivity 
between neurons, useful bottom-up designs can be difficult to realize. 
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