
Functional Verification of SMP, MPP, and Vector-Register
Supercomputers through Controlled Randomness

Joseph T. Wunderlich
Elizabethtown College

Computer Engineering Program

Abstract - Prototype supercomputer functionality can be
verified by comparing simulated hardware execution with
actual hardware test-program runs where each successive test-
program run includes randomly changing machine-states,
operating scenarios, and data. Increased verification is
achieved through repeated program execution. In both multi-
processor and vector-register systems, a “controlled
randomness” can be used to verify the functionality of
simultaneously executing processors or functional units. This
paper discusses the selection and combining of random
number generators such that a “degree-of-randomness”
between successive or parallel program runs is controlled.
This allows computer engineers to simulate the execution of
actual software (application or system-level) in which
successive or parallel program runs may or may not involve
uncorrelated tasks. Additionally, random number generators
are selected to maximize execution speed and cycle-length,
ensure reproducibility, and when desired, best produce a
random source of numbers (i.e., to better approximate an
independent, identically-distributed source). Generators can
also be chosen for ease of implementation, the ability to run
backwards, and the ability to split the generator's cycle into
uncorrelated segments. “Backward multipliers” to allow
generators to be run in reverse can also be easily found for
some types of generators; reversibility is critical for functional
verification so that code execution can be traced backwards to
find scenarios that led to detected hardware failures. When
generators are carefully selected and combined, the
verification process can be optimized. By using this
methodology, functional verification of SMP, MPP and
vector-register supercomputers can be achieved.

TERMS

SMP = Symmetric Multiprocessing
MPP = Massively Parallel Processing
VLSI = Very Large Scale Integration
RNG = Random Number Generator
PASSGEN = RNG’s used to randomize machine-states,
 operating scenarios, and data
PASSGEN() = Function to implement a PASSGEN RNG
SEEDGEN = RNG used to initialize (i.e., seed) PASSGEN’s
SEEDGEN() = Function to implement a SEEDGEN RNG
IID = Independent and Identically Distributed
LCG = Linear Congruent Generator

CLCG = Combined Linear Congruent Generator
LFG = Lagged Fibonacci Generator
A = Forward multiplier for LCG's
B = Backward multiplier for LCG's
C = Additive constant for LCG'S
X{I} = Present number generated
X{I-1}= Previous number generated
Q = Special "decomposition" variable for LCG's
R = Special "decomposition" variable for LCG's
M = Modulus
M_CLCG = Modulus for CLCG
J = Lag for LFG'S (the longer one)
K = Lag for LFG'S
X{I-J}= Previous {I-J} seed from LFG seed array
X{I-K}= Previous {I-K} seed from LFG seed array
OPERT= The arithmetic operator used for the LFG (+, or *)
PERIOD = How many numbers generated before sequence
 repeats (i.e., the “cycle-length”)

I. Introduction

Functional verification is part of an overall quality assurance
process for computer systems; a process that can include:

1. Functional verification programs run in a simulated

prototype-machine environment.
2. Digital and analog VLSI circuit simulation testing.
3. Functional verification programs run on top of a VLSI

circuit simulation.
4. Functional verification programs run on prototype

hardware.
5. Various instruction-mix and performance benchmark

testing.

The idea of using random numbers in test programs has
existed for 20 years; however the methodology was typically
built on the use of one simple random number generator
(RNG). The “controlled randomness” methodology described
below allows the combining of six different random number
generators for the purpose of creating test programs for
functional verification of SMP, MPP and vector-register
supercomputers (as well as uni-processor systems):

 For uni-processor implementations, functional
verification involves running the same test program(s)
repeatedly with different randomization of machine-
states, operating scenarios, and data. The “controlled
randomness” comes from the correlation between the
decisions made, and the data used and changed, within
successive program executions.

 For SMP (Symmetric Multiprocessing) systems, each

processor can experience the same temporal “controlled
randomness” as described above, plus an additional
spatial “controlled randomness” from simultaneously
executing test programs on parallel hardware. An example
specialized SMP test program is one created to verify
cache coherency.

 For MPP (Massively Parallel Processing) systems, the

“controlled randomness” is the same as for SMP systems,
with the exception of different specialized memory
programs to test each processor’s associated memory
elements.

 For vector-register implementations, the “controlled

randomness” exists spatially in the parallel functional
units executing adjacent vector or matrix elements in a
vector operation; and temporally from successive test
program runs.

 The typical test program includes:

1) One or more PASSGEN() functions within each program

or parallel thread to randomize machine-states, operating
scenarios, and data.

2) Each execution of a program or thread contains an initial

random seed generated by a SEEDGEN() function; this is
used for the first invocation of a PASSGEN() function in
each program pass or parallel thread (i.e., to initialize the
PASSGEN). The initial seed for the SEEDGEN can
simply be from the real-time clock. Initial seeds are used
to identify each program pass or parallel thread.

The testing methodology includes selecting and combining
different generators from a set of six that where chosen from a
much larger collection [1 to 16]. Each of these six generators
is represented by one of three general forms:

1)LINEAR CONGRUENT GENERATORS (LCG)
LCG's are designated as LCG(A,C,M), and
have a period equal to M, M/2, M/4, or
M/8. LCG's have the form:

FORWARD:
X{I} =(((A)*X{I-1})+C)//M
BACKWARD:
X{I-1}=(((B)*X{I})+C)//M

Assuming typical 32-bit computations
(i.e., 64-arithematic not available), the
intermediate products A*X{} and B*X{}
must be kept from creating 32-bit
overflow (unless M=2^32 where the //M can
just be ignored). This is done by using a
"decomposed" form of the above equation
(if possible):

FORWARD:
 Q=M/A, R=M//A
 IF A*(X{I-1}//Q) - A*(X{I-1}/R)) > 0
 X{I}= A*(X{I-1}//Q) - A*(X{I-1}/R)
 ELSE
 X{I}=(A*(X{I-1}//Q) - A*(X{I-1}/R))+M

BACKWARD:
 Q=M/B, R=M//B
 IF (B*(X{I}//Q) - B*(X{I}/R)) > 0
 X{I-1}= B*(X{I}//Q) - B*(X{I}/R)
 ELSE
 X{I-1}=(B*(X{I}//Q) - B*(X{I}/R))+M

But this only works if Q > R which is
rare (for example, only 23,000 of the
4,000,000,000 32-bit LCG multipliers
satisfy this). And finding a LCG with
both backward and forward multipliers to
satisfy this is even more difficult.

2)COMBINED LINEAR CONGRUENT GENERATORS
(CLCG)
CLCG'S are made from two LCG's and have a
period of (M1-1)*(M2-1)/2. They have the
form:

FORWARD:
X{I} = ((LCG(A1,C1,M1) +
 (LCG(A2,C2,M2))//M_CLCG
BACKWARD:
 X{I-1} = ((LCG(B1,C1,M1) +
 (LCG(B2,C2,M2))//M_CLCG

3)LAGGED FIBONACCI GENERATORS (LFG)
LFG'S are designated as
LFG(J,K,M,OPERTR), and have period of:

 ((2^J)-1)*(2^(LOG2(M)-1))
 for the + operator
 ((2^J)-1)*(2^(LOG2(M)-3))
 for the * operator

LFG's have the form:
FORWARD:
 X{I} = (X{I-J} OPERTR X{I-K})//M
NO BACKWARD YET

II. Generator Properties

Typically “desirable” generator properties include:
A) Historically proven; has been used for at least several

years in industry or academia (i.e., well tested over time).
B) IID; if “good” randomness desired, produces a string of

numbers which approximate an independent and
identically distributed source (I.I.D.). Independent means
the probability of a number being generated is
independent of when others generated (i.e., no conditional
dependence). Identically distributed means all numbers
have an equal probability of being generated (i.e., a
uniform distribution). A well-known generator discussed
in this paper is “Randu” which is known for poor
randomness. This is illustrated in Fig. 1. where every
successive three numbers created by the generator (i.e.,
“three-tuple”) is plotted as a point in Cartesian space. A
RNG with good randomness would show relatively no
discernable patterns.

C) Long period (cycle); (i.e., many numbers produced before

generator starts over).
D) Non-overlapping segments; each program pass or parallel

thread execution causes a string (a segment) of numbers
to be generated by the pass generator (assuming the
program or thread contains some PASSGEN() 's). Non-
overlapping segments means no significant part of any
two segments will be identical; and therefore the
generator's period can be broken into non-overlapping
segments. This is only possible using the "FIB_A"
generator discussed below. However, any generator with
a large enough period will most likely produce mostly
non-overlapping segments for a typical set of program
passes or parallel thread executions. For example, a
program with 500 PASSGEN()'s using a segment of 500
numbers; if you run the program for 100,000 passes, you
have a total of 50,000,000 numbers used. Even generators
with relatively small periods of 500,000,000 would use
only 10% of all of the numbers contained within their

period. There would be some overlapping segments since
the beginning of each segment is chosen randomly at the
beginning of each program run -- but possibly not an
undesirable amount of overlapping.

E) Execution speed; (both to startup and to run). Programs
with many PASSGEN() 's or long PASSGEN() targets
(e.g., a large desired string of random data) are referred to
as "LONG RUNS" below. Some generators are not well
suited for "SHORT RUNS" because of high initialization
costs.

F) No repeats of a number within a seed generator's cycle
(i.e., period) since a repeating base seed means an
identical pass or parallel thread is generated (however,
since preceding and following passes or adjacent threads
are most likely different, a different scenario may be
tested). Repeating numbers are ok for pass generators --
only repeating sequences need to be avoided.

G) Minimal seed memory requirements (i.e., more seeds
means more record-keeping and computational overhead).

H) Minimal restrictions on initial seed.
I) Reversibility; The seed generator must go backwards; and

the pass generator used by the PASSGEN() 'S is
sometimes desired to go backwards. Reversibility is
critical for functional verification so that code execution
can be traced backwards to find scenarios that led to
detected hardware failures.

J) Repeatability is required for debugging. (Note: all of the
generators below provide repeatability; both individually
and when combined).

III. Evaluation of Seed and Pass Generators

The following seed and pass generators can be specified as
part of the functional verification methodology:

• (#1) to (#4) can be used as either a seed or pass
 generator.
• (#5) and (#6) can only be used as a pass generator
 since they are not yet reversible.

Generator qualities have been subjectively graded below from
(A+) to (F) based on an analysis of algorithm execution times,
and an assessment of “spectral data” and other selection
criteria from relevant literature [1 to 16]:

1) "RANDU"

FORWARD DESIGNATION: LCG(65539,0,2^32)
BACKWARD DESIGNATION: LCG(477211307,0,2^32)
IID(OF 32-BIT WORDS)D
PERIOD............................2^29
OVERLAPPING SEGMENTS..............YES
STARTUP SPEED.....................A+
"SHORT" RUN SPEED.................A+
"LONG" RUN SPEED..................A+

Figure 1. Three-tuple plot of the random number
generator “Randu” showing poor randomness.

REPEATS NUMBER WITHIN PERIOD......NO
NUMBER OF SEEDS...................1
RESTRICTIONS ON INITIAL SEED..NOT 0 OR EVEN
NOTES: Derived from the power residue
method in 1968.

2) "IMPRV"

(AN IMPROVED RANDU-TYPE GENERATOR)

FORWARD DESIGNATION: LCG(71365,0,2^32)
BACKWARD DESIGNATION: LCG(814217229,0,2^32)
IID(OF 32-BIT WORDS)B-
PERIOD............................2^29
OVERLAPPING SEGMENTS..............YES
STARTUP SPEED.....................A+
"SHORT" RUN SPEED.................A+
"LONG" RUN SPEED..................A+
REPEATS NUMBER WITHIN PERIOD......NO
NUMBER OF SEEDS...................1
RESTRICTIONS ON INITIAL SEED..NOT 0 OR EVEN

3) "MINSTD"

("MINIMUM-STANDARD" VER. #2)

FORWARD DESIGNATION: LCG(48271,0,(2^31-1))
BACKWARD DESIG.: LCG(1899818559,0,(2^31-1))
IID(OF 32-BIT WORDS)B
PERIOD............................2^31
OVERLAPPING SEGMENTS..............YES
STARTUP SPEED.....................A
"SHORT" RUN SPEED.................B
"LONG" RUN SPEED..................B
REPEATS NUMBER WITHIN PERIOD......NO
NUMBER OF SEEDS...................1
RESTRICTIONS ON INITIAL SEED......NOT 0
NOTES:
FORWARD: Using decomposed form to
prevent 32-bit overflow with:

 Q=44488,R=3399
 BACKWARD: If 64-bit arithmetic is not
 available, must use simulated 64-bit
 arithmetic to handle 32-bit overflow
 since Q is not greater than R for
 reverse multiplier.

4) "CLCG"

(COMBINES TWO LCG'S)

GENERATOR #1 FORWARD DESIGNATION:

LCG(40014,0,2147483563)
GENERATOR #1 BACKWARD DESIGNATION:

LCG(2082061899,0,2147483563)
GENERATOR #2 FORWARD DESIGNATION:

LCG(40692,0,2147483399)
GENERATOR #2 BACKWARD DESIGNATION:

LCG(1481316021,0,2147483399)
M_CLCG = 1

IID(OF 32-BIT WORDS)B+
PERIOD............................2^63
OVERLAPPING SEGMENTS..............YES
STARTUP SPEED.....................A
"SHORT" RUN SPEED.................B-
"LONG" RUN SPEED..................B-
REPEATS NUMBER WITHIN PERIOD......YES
NUMBER OF SEEDS...................2
RESTRICTIONS ON INITIAL SEED......NOT 0
NOTES:
 FORWARD: Using decomposed form to
 prevent 32-bit overflow with:
 Q1=53668,R1=12211
 Q2=52774,R2=3791
 BACKWARD: If 64-bit arithmetic is not
 available, must use simulated 64-bit
 arithmetic to handle 32-bit overflow
 since Q is not greater than R for
 reverse multiplier.

 During initialization, the base seed
 created by the SEEDGEN is used as the
 initial seed for both constituent
 generators.

5) "FIB_M"
(LAGGED FIBONACCI USING MULTIPLICATION)

FORWARD DESIGNATION: LFG(55,24,2^32,*)
BACKWARD DESIGNATION: NOT YET DERIVED
IID(OF 32-BIT WORDS)A+
PERIOD............................2^83
OVERLAPPING SEGMENTS..............YES
STARTUP SPEED.....................C+
"SHORT" RUN SPEED.................B-
"LONG" RUN SPEED..................A-
REPEATS NUMBER WITHIN PERIOD......YES
NUMBER OF SEEDS...................55
RESTRICTIONS ON INITIAL SEEDS...SEE NOTES
NOTES: Two seeds of the 55 seeds in the
seed table must be updated each
PASSGEN()invocation, and the seed table
must be initialized for each pass; The
initialization requires filling the seed
table with random values using another
generator, then make all entries odd.

6) "FIB_A"
(LAGGED FIBONACCI USING ADDITION)

FORWARD DESIGNATION: LFG(521,168,2^32,+)
BACKWARD DESIGNATION: NOT YET DERIVED
IID(OF 32-BIT WORDS)A
PERIOD............................2^531
OVERLAPPING SEGMENTS..............NO
STARTUP SPEED.....................D
"SHORT" RUN SPEED.................C+

"LONG" RUN SPEED..................A-
REPEATS NUMBER WITHIN PERIOD......YES
NUMBER OF SEEDS...................521
RESTRICTIONS ON INITIAL SEEDS...SEE NOTES
NOTES: Two of the 521 seeds in the seed
table seeds must be updated each
PASSGEN()invocation, and the seed table
must be initialized for each pass; The
initialization requires filling the seed
table with random values using another
generator, then to get a unique non-
overlapping segment of the generator's
cycle (i.e., to get the most uncorrelated
program passes or parallel threads), the
initial array must also be put into a
"CANONICAL FORM". This is only possible
for certain J,K pairs and is made by
shifting left (zero into the LSB), clear
the sign bit, then zero the entire last
entry, then the LSB for one or two
special entries is set to one:

 JK-PAIR ENTRY

 3,2 1
 5,3 2,3
 10,7 8
 17,5 11
 35,2 1
 55,24 12
 71,65 2
 93,91 2,3
 127,97 22
 158,128 64
 521,168 88 (Tested J,K PAIR)

IV. Summary of Generators:

Note: Reverse multipliers where found for the linear
congruent generators by simply testing all numbers within
each generator’s period (i.e., does one step backwards using a
candidate reverse multiplier result in a step equivalent to that
of taking one step forward using the forward multiplier.)

V. Controlled Randomness

The “degree-of-randomness” between successive or parallel
program runs is controlled through the selection of seed and
pass generators. For example,

For filling large data areas or for programs with few
PASSGEN()’s,
Choose:

 SEEDGEN="MINSTD"
 PASSGEN="IMPRV"
for very fast, reversible PASSGEN()’s, a single seed, and “ok”
randomness; but small period and overlapping segments.

For programs with many PASSGEN()’s (some reversible),
Choose:

SEEDGEN="MINSTD"
 PASSGEN="CLCG"
for very random, reversible PASSGEN()’s, and big period; but
overlapping segments and two seeds to handle.

For programs with many PASSGEN()’s (none reversible),
Choose:

SEEDGEN="MINSTD"
 PASSGEN="FIB_A"
for the ultimate in non-correlated passes or parallel streams
(i.e., very good IID and non-overlapping segments); but not
reversible PASSGEN()’s and requires 521 seeds.

For any program where intentional lack of randomness and
high correlation between passes or parallel streams is desired,
Choose:

SEEDGEN="RANDU"
 PASSGEN="RANDU"
This can often more accurately simulate actual code execution
(i.e., lack of randomness and interdependence between
successive passes or parallel threads may sometimes be a good
thing!).

VI. Conclusions

Prototype SMP, MPP, and vector-register supercomputer
functionality can be verified by comparing simulated hardware
execution with actual hardware test-program executions where
each successive or parallel test-program run includes
randomly changing machine-states, operating scenarios, and
data. The selection and combining of random number
generators, such that a “degree-of-randomness” between
program runs or parallel threads is controlled, allows computer
engineers to simulate the execution of actual software in
which program execution may or may not involve
uncorrelated tasks. When generators are carefully selected and
combined, verification can be optimized.

 RANDU IMPRV MINSTD CLCG FIB_M FIB_A

IID (“randomness”) D B- B B+ A+ A
PERIOD (cycle) 2^29 2^29 2^31 2^63 2^83 2^531
OVERLAPPING Y Y Y Y Y N
STARTUP SPEED A+ A+ A A C+ D
"SHORT" RUN SPEED A+ A+ B B- B- C+
"LONG" RUN SPEED A+ A+ B B- A- A-
REPEATS IN PERIOD N N N Y Y Y
NUMBER OF SEEDS 1 1 1 2 55 521
SEED RESTRICTIONS not 0, not 0, not 0, not 0, MANY MANY
 odd odd
CAN GO BACKWARDS Y Y Y Y N N

References

[1] Niederreiter, H., “New developments in uniform
pseudorandom number and vector generation”, In
Niederreiter, H. and Shiue, P.J.-S., editor(s), Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, volume
106 of Lecture Notes in Statistics. Springer-Verlag,
Heidelberg New York, 1995.

[2] Makino, J., “Lagged-Fibonacci random number
generators on parallel computers”, Parallel Computing, vol.
20, no. 9: pp. 1357-1367, 1994.

[3] Pryor, D. V., et. al., “Implementation of a Portable and
Reproducible Parallel Psuedorandom Number
Generator”, in Proc. of IEEE Int'l Conf. on Supercomputing,
pp. 311-319, 1994, Washington, D.C..

[4] Marsaglia, G. and Zaman, A., “Some portable very-long
period random number generators”, Computers in Physics,
vol. 8, no. 1: pp. 117-121. 1994.

[5] Press, W. and Teukolsky, S. A., “Portable random
number generators”, Computers in Physics, vol. 6, no. 5: pp.
117-121. 1992.

[6] Law, A. M. and Kelton, W. D., “Simulation modeling
and analysis”, 2nd ed., McGraw-Hill, Boston, MA: 1991.

[7] Anderson, S.L.: “Random number generators on vector
supercomputers and other advanced architectures”, SIAM
Rev., 32: pp. 221-251, 1990.

[8] L'Ecuyer, P., “Random numbers for simulation”,
Comm. ACM, vol. 33, no.10: pp. 85-97, 1990.

[9] Carter, D. G.: “Two fast implementations of the
“minimal standard” random number generator”, Comm.
ACM, vol. 33, no.1: pp. 87-98, 1990.

[10] Lewis, P.A.W. and Orav, E. J., “Simulation methods for
statisticians, operations analysts and engineers”,
Wadsworth & Brooks/Cole, Pacific Grove, CA: 1989.

[11] Maclaren, N. M., “The generation of multiple
independent sequences of pseudorandom numbers”, J.
Appl. Statistics, vol. 38, no.2: pp. 351-359, 1989.

[12] Park, S.K. and Miller, W. M., “Random number
generators: good ones are hard to find”, Comm. ACM, vol.
31, no.10: pp. 1192-1201, 1988.

[13] Altman, N.S., “Bit-wise behavior of random number
generators”, SIAM vol. 9, no.5: pp. 941-949, 1988.

[14] L'Ecuyer, P., “Efficient and portable combined
random number generators”, Comm. ACM, vol. 31, no.6:
pp. 85-97, 1988.

[15] Marsaglia, G., “A current view of random number
generators”, In Billard, L., editor(s), Computer Science and
Statistics: The Interface, pp. 3-10. Elsevier Science Publishers
B.V., Amsterdam, 1985.

[16] Knuth, D.E., “The Art of Computer Programming,”,
vol. 2: Seminumerical Algorithms. Addison-Wesley, Reading,
MA, 2nd edition, 1981.

Dr. JOSEPH T. WUNDERLICH
Dr. Wunderlich is an Assistant Professor of Computer Science
and Computer Engineering at Elizabethtown College.
Previously, he worked for Purdue University as an Assistant
Professor and for IBM as a researcher and hardware
development engineer. Dr. Wunderlich received his Ph.D. in
Electrical and Computer Engineering from the University of
Delaware, his Masters in Engineering Science/Computer
Design from The Pennsylvania State University, and his BS in
Engineering from the University of Texas at Austin.

	TERMS
	I. Introduction
	III. Evaluation of Seed and Pass Generators
	References
	Dr. JOSEPH T. WUNDERLICH

