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Abstract - Prototype supercomputer functionality can be 
verified by comparing simulated hardware execution with 
actual hardware test-program runs where each successive test-
program run includes randomly changing machine-states, 
operating scenarios, and data. Increased verification is 
achieved through repeated program execution. In both multi-
processor and vector-register systems, a “controlled 
randomness” can be used to verify the functionality of 
simultaneously executing processors or functional units. This 
paper discusses the selection and combining of random 
number generators such that a  “degree-of-randomness” 
between successive or parallel program runs is controlled. 
This allows computer engineers to simulate the execution of 
actual software (application or system-level) in which 
successive or parallel program runs may or may not involve 
uncorrelated tasks. Additionally, random number generators 
are selected to maximize execution speed and cycle-length, 
ensure reproducibility, and when desired, best produce a 
random source of numbers (i.e., to better approximate an 
independent, identically-distributed source). Generators can 
also be chosen for ease of implementation, the ability to run 
backwards, and the ability to split the generator's cycle into 
uncorrelated segments. “Backward multipliers” to allow 
generators to be run in reverse can also be easily found for 
some types of generators; reversibility is critical for functional 
verification so that code execution can be traced backwards to 
find scenarios that led to detected hardware failures. When 
generators are carefully selected and combined, the 
verification process can be optimized. By using this 
methodology, functional verification of SMP, MPP and 
vector-register supercomputers can be achieved. 
  

TERMS 
 
SMP = Symmetric Multiprocessing 
MPP = Massively Parallel Processing 
VLSI = Very Large Scale Integration 
RNG = Random Number Generator 
PASSGEN = RNG’s used to randomize machine-states, 
                      operating scenarios, and data 
PASSGEN() = Function to implement a PASSGEN RNG 
SEEDGEN = RNG used to initialize (i.e., seed) PASSGEN’s 
SEEDGEN() = Function to implement a SEEDGEN RNG 
IID = Independent and Identically Distributed 
LCG =  Linear Congruent Generator 

CLCG =  Combined Linear Congruent Generator 
LFG = Lagged Fibonacci Generator 
A = Forward multiplier for LCG's 
B = Backward multiplier for LCG's 
C = Additive constant for LCG'S 
X{I} = Present number generated 
X{I-1}= Previous number generated 
Q = Special "decomposition" variable for LCG's 
R = Special "decomposition" variable for LCG's 
M = Modulus 
M_CLCG = Modulus for CLCG 
J = Lag for LFG'S (the longer one) 
K = Lag for LFG'S 
X{I-J}=  Previous {I-J} seed from LFG seed array 
X{I-K}=  Previous {I-K} seed from LFG seed array 
OPERT= The arithmetic operator used for the LFG (+, or  *) 
PERIOD = How many numbers generated before sequence 
                   repeats (i.e., the “cycle-length”) 
 
I.  Introduction 
 
Functional verification is part of an overall quality assurance 
process for computer systems; a process that can include: 
 
1. Functional verification programs run in a simulated 

prototype-machine environment. 
2. Digital and analog VLSI circuit simulation testing. 
3. Functional verification programs run on top of a VLSI 

circuit simulation. 
4. Functional verification programs run on prototype 

hardware. 
5. Various instruction-mix and performance benchmark 

testing. 
  
The idea of using random numbers in test programs has 
existed for 20 years; however the methodology was typically 
built on the use of one simple random number generator 
(RNG). The “controlled randomness” methodology described 
below allows the combining of six different random number 
generators for the purpose of creating test programs for 
functional verification of SMP, MPP and vector-register 
supercomputers (as well as uni-processor systems): 
 
 



 For uni-processor implementations, functional 
verification involves running the same test program(s) 
repeatedly with different randomization of machine-
states, operating scenarios, and data. The “controlled 
randomness” comes from the correlation between the 
decisions made, and the data used and changed, within 
successive program executions. 

 
 For SMP (Symmetric Multiprocessing) systems, each 

processor can experience the same temporal “controlled 
randomness” as described above, plus an additional 
spatial “controlled randomness” from simultaneously 
executing test programs on parallel hardware. An example 
specialized SMP test program is one created to verify 
cache coherency. 

 
 For MPP (Massively Parallel Processing) systems, the 

“controlled randomness” is the same as for SMP systems, 
with the exception of different specialized memory 
programs to test each processor’s associated memory 
elements. 

 
 For vector-register implementations, the “controlled 

randomness” exists spatially in the parallel functional 
units executing adjacent vector or matrix elements in a 
vector operation; and temporally from successive test 
program runs. 

 
 The typical test program includes: 
 
1) One or more PASSGEN() functions within each program 

or parallel thread to randomize machine-states, operating 
scenarios, and data. 

 
2) Each execution of a program or thread contains an initial 

random seed generated by a SEEDGEN() function; this is 
used for the first invocation of a PASSGEN() function in 
each program pass or parallel thread (i.e., to initialize the 
PASSGEN). The initial seed for the SEEDGEN can 
simply be from the real-time clock. Initial seeds are used 
to identify each program pass or parallel thread. 

 
The testing methodology includes selecting and combining 
different generators from a set of six that where chosen from a 
much larger collection [1 to 16]. Each of these six generators 
is represented by one of three general forms: 
 
1)LINEAR CONGRUENT GENERATORS (LCG) 
LCG's are designated as LCG(A,C,M), and 
have a period equal to M, M/2, M/4, or 
M/8. LCG's have the form: 
 
FORWARD: 
X{I}  =(((A)*X{I-1})+C)//M    
BACKWARD: 
X{I-1}=(((B)*X{I})+C)//M   

Assuming typical 32-bit computations 
(i.e., 64-arithematic not available), the 
intermediate products A*X{} and B*X{} 
must be kept from creating 32-bit 
overflow (unless M=2^32 where the //M can 
just be ignored). This is done by using a 
"decomposed" form of the above equation 
(if possible): 
 
FORWARD: 
 Q=M/A, R=M//A 
 IF    A*(X{I-1}//Q) - A*(X{I-1}/R)) > 0 
       X{I}= A*(X{I-1}//Q) - A*(X{I-1}/R) 
 ELSE 
    X{I}=(A*(X{I-1}//Q) - A*(X{I-1}/R))+M 
 
BACKWARD: 
  Q=M/B, R=M//B 
  IF   (B*(X{I}//Q) - B*(X{I}/R)) > 0 
        X{I-1}= B*(X{I}//Q) - B*(X{I}/R) 
  ELSE 
    X{I-1}=(B*(X{I}//Q) - B*(X{I}/R))+M 
 
But this only works if Q > R which is 
rare (for example, only 23,000 of the 
4,000,000,000 32-bit LCG multipliers 
satisfy this). And finding a LCG with 
both backward and forward multipliers to 
satisfy this is even more difficult. 
 
2)COMBINED LINEAR CONGRUENT GENERATORS 
(CLCG) 
CLCG'S are made from two LCG's and have a 
period of (M1-1)*(M2-1)/2. They have the 
form: 
 
FORWARD: 
X{I} = ((LCG(A1,C1,M1) + 
         (LCG(A2,C2,M2))//M_CLCG  
BACKWARD: 
   X{I-1} = ((LCG(B1,C1,M1) + 
         (LCG(B2,C2,M2))//M_CLCG     
 
3)LAGGED FIBONACCI GENERATORS (LFG) 
LFG'S are designated as 
LFG(J,K,M,OPERTR), and have period of: 
 
 ((2^J)-1)*(2^(LOG2(M)-1)) 
 for the + operator 
 ((2^J)-1)*(2^(LOG2(M)-3)) 
 for the * operator 
 
LFG's have the form: 
FORWARD: 
  X{I} = (X{I-J} OPERTR X{I-K})//M   
NO BACKWARD YET 
 



II.  Generator Properties 
 
Typically “desirable” generator properties include:  
A) Historically proven; has been used for at least several 

years in industry or academia (i.e., well tested over time). 
B) IID; if “good” randomness desired, produces a string of 

numbers which approximate an independent and 
identically distributed source (I.I.D.). Independent means 
the probability of a number being generated is 
independent of when others generated (i.e., no conditional 
dependence). Identically distributed means all numbers 
have an equal probability of being generated (i.e., a 
uniform distribution). A well-known generator discussed 
in this paper is “Randu” which is known for poor 
randomness. This is illustrated in Fig. 1. where every 
successive three numbers created by the generator (i.e., 
“three-tuple”) is plotted as a point in Cartesian space. A 
RNG with good randomness would show relatively no 
discernable patterns.   

 

 
 
  
 
C) Long period (cycle); (i.e., many numbers produced before 

generator starts over).  
D) Non-overlapping segments; each program pass or parallel 

thread execution causes a string (a segment) of numbers 
to be generated by the pass generator (assuming the 
program or thread contains some PASSGEN() 's). Non-
overlapping segments means no significant part of any 
two segments will be identical; and therefore the 
generator's period can be broken into non-overlapping 
segments. This is only possible using the "FIB_A" 
generator discussed below. However, any generator with 
a large enough period will most likely produce mostly 
non-overlapping segments for a typical set of program 
passes or parallel thread executions. For example, a 
program with 500 PASSGEN()'s using a segment of 500 
numbers; if you run the program for 100,000 passes, you 
have a total of 50,000,000 numbers used. Even generators 
with relatively small periods of 500,000,000 would use 
only 10% of all of the numbers contained within their 

period. There would be some overlapping segments since 
the beginning of each segment is chosen randomly at the 
beginning of each program run -- but possibly not an 
undesirable amount of overlapping.  

E) Execution speed; (both to startup and to run). Programs 
with many PASSGEN() 's or long PASSGEN() targets 
(e.g., a large desired string of random data) are referred to 
as "LONG RUNS" below. Some generators are not well 
suited for "SHORT RUNS" because of high initialization 
costs. 

F) No repeats of a number within a seed generator's cycle 
(i.e., period) since a repeating base seed means an 
identical pass or parallel thread is generated (however, 
since preceding and following passes or adjacent threads 
are most likely different, a different scenario may be 
tested). Repeating numbers are ok for pass generators -- 
only repeating sequences need to be avoided. 

G) Minimal seed memory requirements (i.e., more seeds 
means more record-keeping and computational overhead). 

H) Minimal restrictions on initial seed. 
I) Reversibility; The seed generator must go backwards; and 

the pass generator used by the PASSGEN() 'S is 
sometimes desired to go backwards. Reversibility is 
critical for functional verification so that code execution 
can be traced backwards to find scenarios that led to 
detected hardware failures. 

J) Repeatability is required for debugging. (Note: all of the 
generators below provide repeatability; both individually 
and when combined). 

 
 
III.  Evaluation of Seed and Pass Generators 
 
The following seed and pass generators can be specified as 
part of the functional verification methodology: 
 
• (#1) to (#4) can be used as either a seed or pass 
         generator. 
• (#5) and (#6) can only be used as a pass generator 
         since they are not yet reversible. 
 

Generator qualities have been subjectively graded below from 
(A+) to (F) based on an analysis of algorithm execution times, 
and an assessment of “spectral data” and other selection 
criteria from relevant literature [1 to 16]: 
 
1) "RANDU" 

 
FORWARD DESIGNATION:  LCG(65539,0,2^32) 
BACKWARD DESIGNATION: LCG(477211307,0,2^32) 
IID(OF 32-BIT WORDS) .............D 
PERIOD............................2^29 
OVERLAPPING SEGMENTS..............YES 
STARTUP SPEED.....................A+ 
"SHORT" RUN SPEED.................A+ 
"LONG" RUN SPEED..................A+ 

Figure 1.  Three-tuple plot of  the random number 
generator “Randu” showing poor randomness. 



REPEATS NUMBER WITHIN PERIOD......NO 
NUMBER OF SEEDS...................1 
RESTRICTIONS ON INITIAL SEED..NOT 0 OR EVEN 
NOTES: Derived from the power residue 
method in 1968. 
  
2) "IMPRV"  

(AN IMPROVED RANDU-TYPE GENERATOR) 
 

FORWARD DESIGNATION:  LCG(71365,0,2^32) 
BACKWARD DESIGNATION: LCG(814217229,0,2^32) 
IID(OF 32-BIT WORDS) .............B- 
PERIOD............................2^29 
OVERLAPPING SEGMENTS..............YES 
STARTUP SPEED.....................A+ 
"SHORT" RUN SPEED.................A+ 
"LONG" RUN SPEED..................A+ 
REPEATS NUMBER WITHIN PERIOD......NO 
NUMBER OF SEEDS...................1 
RESTRICTIONS ON INITIAL SEED..NOT 0 OR EVEN 
 
3) "MINSTD" 

("MINIMUM-STANDARD" VER. #2) 
 

FORWARD DESIGNATION: LCG(48271,0,(2^31-1)) 
BACKWARD DESIG.:  LCG(1899818559,0,(2^31-1)) 
IID(OF 32-BIT WORDS) .............B                 
PERIOD............................2^31 
OVERLAPPING SEGMENTS..............YES 
STARTUP SPEED.....................A 
"SHORT" RUN SPEED.................B 
"LONG" RUN SPEED..................B 
REPEATS NUMBER WITHIN PERIOD......NO 
NUMBER OF SEEDS...................1 
RESTRICTIONS ON INITIAL SEED......NOT 0 
NOTES: 
FORWARD: Using decomposed form to 
prevent 32-bit overflow with: 

             Q=44488,R=3399 
  BACKWARD: If 64-bit arithmetic is not 
  available, must use simulated 64-bit 
  arithmetic to handle 32-bit overflow 
  since Q is not greater than R for 
  reverse multiplier. 
 
4) "CLCG" 

(COMBINES TWO LCG'S) 
 
GENERATOR #1 FORWARD DESIGNATION: 

LCG(40014,0,2147483563) 
GENERATOR #1 BACKWARD DESIGNATION: 

LCG(2082061899,0,2147483563) 
GENERATOR #2 FORWARD DESIGNATION: 

LCG(40692,0,2147483399) 
GENERATOR #2 BACKWARD DESIGNATION: 

LCG(1481316021,0,2147483399) 
M_CLCG = 1 

IID(OF 32-BIT WORDS) .............B+ 
PERIOD............................2^63 
OVERLAPPING SEGMENTS..............YES 
STARTUP SPEED.....................A 
"SHORT" RUN SPEED.................B- 
"LONG" RUN SPEED..................B- 
REPEATS NUMBER WITHIN PERIOD......YES 
NUMBER OF SEEDS...................2 
RESTRICTIONS ON INITIAL SEED......NOT 0 
NOTES: 
  FORWARD: Using decomposed form to 
  prevent 32-bit overflow with: 
            Q1=53668,R1=12211 
            Q2=52774,R2=3791 
  BACKWARD: If 64-bit arithmetic is not 
  available, must use simulated 64-bit 
  arithmetic to handle 32-bit overflow 
  since Q is not greater than R for 
  reverse multiplier. 
 
  During initialization, the base seed 
  created by the SEEDGEN is used as the 
  initial seed for both constituent 
  generators. 
 
5) "FIB_M" 
(LAGGED FIBONACCI USING MULTIPLICATION) 

 
FORWARD DESIGNATION:  LFG(55,24,2^32,*) 
BACKWARD DESIGNATION: NOT YET DERIVED 
IID(OF 32-BIT WORDS) .............A+ 
PERIOD............................2^83 
OVERLAPPING SEGMENTS..............YES 
STARTUP SPEED.....................C+ 
"SHORT" RUN SPEED.................B- 
"LONG" RUN SPEED..................A- 
REPEATS NUMBER WITHIN PERIOD......YES 
NUMBER OF SEEDS...................55 
RESTRICTIONS ON INITIAL SEEDS...SEE NOTES 
NOTES: Two seeds of the 55 seeds in the 
seed table must be updated each 
PASSGEN()invocation, and the seed table 
must be initialized for each pass; The 
initialization requires filling the seed 
table with random values using another 
generator, then make all entries odd. 
 
6) "FIB_A" 
(LAGGED FIBONACCI USING ADDITION) 

 
FORWARD DESIGNATION:  LFG(521,168,2^32,+) 
BACKWARD DESIGNATION: NOT YET DERIVED 
IID(OF 32-BIT WORDS) .............A 
PERIOD............................2^531 
OVERLAPPING SEGMENTS..............NO 
STARTUP SPEED.....................D 
"SHORT" RUN SPEED.................C+ 



"LONG" RUN SPEED..................A- 
REPEATS NUMBER WITHIN PERIOD......YES 
NUMBER OF SEEDS...................521 
RESTRICTIONS ON INITIAL SEEDS...SEE NOTES 
NOTES: Two of the 521 seeds in the seed 
table seeds must be updated each 
PASSGEN()invocation, and the seed table 
must be initialized for each pass; The 
initialization requires filling the seed 
table with random values using another 
generator, then to get a unique non-
overlapping segment of the generator's 
cycle (i.e., to get the most uncorrelated 
program passes or parallel threads), the 
initial array must also be put into a 
"CANONICAL FORM". This is only possible 
for certain J,K pairs and is made by 
shifting left (zero into the LSB), clear 
the sign bit, then zero the entire last 
entry, then the LSB for one or two 
special entries is set to one: 
          --------------- 
          JK-PAIR   ENTRY 
          --------------- 
           3,2       1 
           5,3       2,3 
           10,7      8 
           17,5      11 
           35,2      1 
           55,24     12 
           71,65     2 
           93,91     2,3 
           127,97    22 
           158,128   64 
           521,168   88 (Tested J,K PAIR) 
 
 
IV.  Summary of Generators: 
    
 
 
 
 
 
 
 
 
 
Note: Reverse multipliers where found for the linear 
congruent generators by simply testing all numbers within 
each generator’s period (i.e., does one step backwards using a 
candidate reverse multiplier result in a step equivalent to that 
of taking one step forward using the forward multiplier.) 
 
 
 
 

V.  Controlled Randomness 
 
The “degree-of-randomness” between successive or parallel 
program runs is controlled through the selection of seed and 
pass generators. For example, 
------------------------------------------------------------------------- 
For filling large data areas or for programs with few 
PASSGEN()’s,   
Choose: 

  SEEDGEN="MINSTD" 
               PASSGEN="IMPRV" 
for very fast, reversible PASSGEN()’s, a single seed, and “ok” 
randomness; but small period and overlapping segments. 
------------------------------------------------------------------------- 
For programs with many PASSGEN()’s (some reversible), 
Choose:  

SEEDGEN="MINSTD" 
               PASSGEN="CLCG" 
for very random, reversible PASSGEN()’s, and big period; but 
overlapping segments and two seeds to handle. 
------------------------------------------------------------------------- 
For programs with many PASSGEN()’s (none reversible), 
Choose:  

SEEDGEN="MINSTD" 
              PASSGEN="FIB_A"  
for the ultimate in non-correlated passes or parallel streams 
(i.e., very good IID and non-overlapping segments); but not 
reversible PASSGEN()’s and requires 521 seeds. 
------------------------------------------------------------------------- 
For any program where intentional lack of randomness and 
high correlation between passes or parallel streams is desired, 
Choose:  

SEEDGEN="RANDU" 
               PASSGEN="RANDU" 
This can often more accurately simulate actual code execution 
(i.e., lack of randomness and interdependence between 
successive passes or parallel threads may sometimes be a good 
thing!). 
 
 
VI.  Conclusions 
 
Prototype SMP, MPP, and vector-register supercomputer 
functionality can be verified by comparing simulated hardware 
execution with actual hardware test-program executions where 
each successive or parallel test-program run includes 
randomly changing machine-states, operating scenarios, and 
data.  The selection and combining of random number 
generators, such that a “degree-of-randomness” between 
program runs or parallel threads is controlled, allows computer 
engineers to simulate the execution of actual software in 
which program execution may or may not involve 
uncorrelated tasks. When generators are carefully selected and 
combined, verification can be optimized. 
 

                                       RANDU  IMPRV  MINSTD  CLCG   FIB_M  FIB_A 
 
IID (“randomness”)               D         B-          B             B+        A+       A 
PERIOD (cycle)                  2^29     2^29      2^31           2^63     2^83     2^531 
OVERLAPPING                   Y         Y            Y             Y           Y         N 
STARTUP SPEED               A+       A+          A             A           C+       D  
"SHORT" RUN SPEED        A+       A+          B             B-          B-       C+ 
"LONG" RUN SPEED          A+       A+          B             B-          A-       A- 
REPEATS IN PERIOD         N         N           N            Y            Y         Y 
NUMBER OF SEEDS           1          1            1             2           55      521 
SEED RESTRICTIONS     not 0,   not 0,    not 0,      not 0,   MANY  MANY 
  odd      odd   
CAN GO BACKWARDS       Y         Y            Y            Y           N        N 
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