
 1 Copyright © 2002 by ASME

Proceedings of 2002 JUSFA:
2002 Japan-U.S.A Symposium on Flexible Automation

July 15-17,2002 Hiroshima, JAPAN

U-007

DEVELOPMENT OF AN INTERACTIVE SIMULATION WITH REAL-TIME ROBOTS
FOR SEARCH AND RESCUE

D. A. Campos, Elizabethtown College
camposda@etown.edu

J. T. Wunderlich, Elizabethtown College
wunderjt@etown.edu

ABSTRACT
This research involves the use of cooperative mobile robots

for use in search and rescue. A two-part process uses the
analysis from a concurrent simulation that directs actions of
surveying robots in the field while modeling the robots’
environment. Expanding the simulation part of the network
leaves room for study of different scenarios.

INTRODUCTION

Three mobile robots have been built and programmed for
search and rescue. The general problem is the development of
cooperative mobile robots commencing a search and rescue
effort through the use of an interactive simulation. This paper
addresses the issue of having variable data monitored by a
single simulation and affirming the possibility of search and
rescue given the constraints of the relatively inexpensive
mobile robots. Communication between robots can be
monitored with the use of a LEGO Mindstorm IR tower. After
establishing the link with the robots a closed-loop system was
developed to produce findings through the surveying robots in
the field.

The main robot used is the Scout that gathers the
fundamental data to be processed in the simulation once
returned via Datalog. All of the mobile robots are programmed
using the Not-Quite-C (NQC) programming language described
in [1], which Baum shows is almost like the C language. The
RCX brick has a default language and interface, RCX code, but
is aimed at young consumers [4]. The NQC language is much
more flexible because of its ability to use data structures and
not as limiting as the RCX language [1,2,3].

The Datalog is a useful function available through the
RCX that records data into a matrix that can be fed back to the
CPU. The following lines of code would designate creating the
Datalog matrix in the Scout, and adding the value of one of
three of its internal timers:

The results of the Datalog return to the CPU in a file with
corresponding variable numbers and values.

The MATLAB simulation can be used to interpret the
encoded data. Such software was chosen due to the ease of
creating the simulation environment and manipulability of
mathematical modeling. The simulation window in Figure 1
shows the anticipated path taken by the robot from the data.

Figure 1: Simulation Output Window. Grey designates
unknown area, robots shown: scout (black), medic (blue), fire-
suppressant (red), and a light source (red).

There are two different approaches to the study: one
measures only time and direction, the other incorporates
displacement. Without the proper inputs from the scout, we are
limited to knowing only the direction of the scout and how long
it moved in that direction. A large assumption, using this
method, is that the robot is constantly moving. We are assured
that there have been no obstacles in the way because of the
bump switches on the front of the scout that monitors the
presence of walls or objects in the environment. However, as
in most mobile robot studies, the event of slippage cannot be
monitored without incorporating relative movement of the
robot to its surroundings [5].));og(Timer(0AddToDatal

log(1000);CreateData

 2 Copyright © 2002 by ASME

The study was done using only the internal timer, and
bump sensors on the RCX block. To have full comprehension
of the terrain using only three sensors (possibly four in the
future) goes beyond the scope of this paper. In order to assure
that we are not just “spinning our wheels”, the study is recorded
visually (via camera) to compare actual results. However, in
the real world, we must do without the camera, obviously,
incorporating displacement and tactics to counter slipping for a
more accurate localization of objects in an unknown or
untraversable terrain. A third “benchmark” is considered in the
study for a theoretical analysis of what should happen given a
reproducible testing environment (e.g. a pen with positioned
objects).

Figure 2: Overview of Entire Study Flowchart.

In order to gather and interpret the incoming data from the
recording Datalog, the Scout must return to the CPU interface
(the IR tower) and report its findings. A closed loop system is
used to iterate through the Datalog in order to simulate the
actions as they occurred. These animations are drawn on the
map, which the simulation is keeping track of. Figure 3
illustrates the use of such a system. A large assumption in the
study is that the simulation has unlimited memory and time is
always flexible.

Figure 3: Data Process Flow Chart. Simulation iterates through
Datalog to filter the illustration onto the map.

The problem of the dimensionless value of distance in the
study has been replaced with a general tested velocity of
7.7sec/m, which will be used to convert time to distance in the
maps. An optical encoder could not be used since the three
sensor ports of the RCX block were in use. The present
organization is the least complex and satisfies the nature of this
study. Future test runs will use an optical decoder to measure
distance by wheel rotations.

Previous studies using the LEGO Mindstorms have
brought results showing capabilities of communication among
each other [2]. After gaining knowledge of the environment,
the simulation can inform the other mobile robots of their tasks.
To complete this, task the “-msg” and “SendMessage()”
functions are used throughout the search process (perhaps
rescue).

Figure 4: IR Tower and Scout Robot. The robot must face the
tower in order to communicate with the Simulation.

 Two other mobile robots have been built and are fully
functional clones of the Scout; but have been programmed to
react to the findings of either the “fire” or the “human.” The
necessary condition for their intervention varies among sensor
types on the robots. Using a candle alone as a light source
merely demonstrates the ability to use such a system.

TESTING
 The scenario in place is having the Scout in a situation
where it finds a light source after bumping into one wall. After
witnessing the robot’s search, the data is sent back to the
simulation. The Datalog returned is a readable set of three
columns of raw data. By parsing the information, the
information could be processed through the output filters of the
previous flowcharts.

While the CPU was able to send the message that would
alert the other mobile robots, it was unclear as to how much
time was needed to keep the other robots active. Therefore the
robots were kept on a sleeping algorithm to wait for a message
from the Scout whether they were needed. An example of what
occurred can be seen in Figure 5.

 3 Copyright © 2002 by ASME

(a)

(b)

(c)

Figure 5: (a) Start of search by Scout. Scout is asterisk on. (b)
Scout bumps wall but makes the predefined turn to avoid the
obstacle. (c) Scout finds light source.

Further testing showed that the light sensors on the robots
have a range to detect the incoming light source. Data from the
Datalog can be read into a simulation in this manner to display
results. The actual timing output in the simulation was not as
exact as the actual robot. This may be due to the RCX’s
internal timer’s constraint of only outputting time in 100ms
resolution. A newer version of this hardware allows better

resolution thus better results. Furthermore, by adding the
Datalog element into the other two robots, we may be able to
keep track of the actions of all of the robots. This would mean
having multiple Scouts and multiple emergency robots.

CONCLUSION

 From the results and tests we are positive that using
this model of a coordinated effort for search and rescue is
emerging. Using the MATLAB simulation along with the
Datalog in the RCX Scout allows many possibilities. The
nature of the study was made on the basis of limited time and
finances. Further testing and redesign is always possible, but to
do so would change the basic structure of our closed-loop
system. Several instances in the study begged the question of
whether nonlinear anomalies in the system would have an
overall effect on this type of venture. Since the robot uses a
limited power supply (it uses NiMH batteries), power
consumption was always an issue. Furthermore, friction of
surfaces and eventual gathering of dust (if not a monitored
environment) will affect the results. Future considerations may
be to use neural networks to initiate map learning or
development of occupancy maps where the ability to maneuver
relates to space known to be previously searched.

REFERENCES
[1] Baum,D., Definitive guide to Lego Mindstorms (and Not-

Quite-C). Emeryville, CA: Apress, 2000.
[2] Pittinger, B., Drill, T., Glasby, W., and Shank, K.,

Simulation and real-time control of DewEbot: an
Elizabethtown College mobile robot, CS/ENGR 344
semester project report, Elizabethtown College, Fall 2000.

[3] Zabriskie, K., and Drill, T., RCX, Not Quite C, and Data
Logging: an Elizabethtown College study to compare two
programming languages, CS/ENGR 344 semester project
report, Elizabethtown College, Fall 2000.

[4] Wallich, P., Mindstorms Not Just a Kid’s Toy, IEEE
Spectrum (September 2001) 52-57.

[5] Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus,
T., Hennig, D., Hofmann, T., Krell, M., and Schimdt, T.,
Map Learning and High-Speed Navigation in RHINO. In
Artificial Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems, Kortenkamp, D., Bonasso, R.P.,
and Murphy, R., eds., 21-52. Cambridge, Mass.: The MIT
Press, 1998.

