
 #2002SECon-SEC000: page 1

Development of Software for Mobile Robot Control over a Radio
Frequency Communications Link

Matt Lister; Elizabethtown College; Elizabethtown, PA
Joseph T. Wunderlich; Elizabethtown College; Elizabethtown, PA

Keywords: RF communications, mobile robots, control software

ABSTRACT

In the spring of 2001, work began on a mobile robot for
an advanced computer engineering class. One of the key
parts to the success of this robot would be the ability for it
to be controlled from a computer terminal. In order to
make this feasible, the computer would communicate to
the robot through a wireless connection. The robot’s on-
board computer would perform any computations needed,
so the robot didn’t need to send any information to the
controlling computer. The communication link was
designated to be one way, from the computer to the robot.
For reasons including cost efficiency, ease of use, and
range, RF communication was chosen.

Using two development boards from Linx Technologies,
we had the capability of communicating through the
computers serial port. The boards boasted a line of sight
range of about 1000 feet. The board acts as nothing more
then a transmitter and receiver, so any error correction
must be dealt with in the software. Often errors come
from interference created by surrounding RF devices, and
appear as incorrect bits in the data stream.

In order to handle such errors, methods involving
redundancy were used. When the stream of information is
sent, it is initialized by a start byte. This is followed by the
commands, each of which is repeated three times followed
by a stop byte. On the receiving end, the software waits
for the start byte and then stores each byte that follows.
They are then compared with one another and determined
to be either clean data or an error. If the data is clean, the
robot then executes the commands.

By monitoring the data received by the receiver we were
able to see the need for such software. Upon powering up
the board, miscellaneous bits are received; and if there is
no error correction, the robot could misinterpret these for a
command. The boards also received stray bytes while idle,
so the software would also eliminate this. Software
development was started and initially tested over a
crossover cable connecting the two serial ports. This
allowed us to ensure that the software was working with
out seeing any errors at first. Finally the software was
used with the RF boards and seen to be functional.

This paper will explore, in depth, the methods used by
software to correct errors that may develop in RF

communication. The materials used will be discussed in
greater detail along with the creation of the software.
Experimental results will show the methods to be precise,
and fit the design application needs.

1. INTRODUCTION

The communication programs for use on both the robot
and the base computers were written using Visual C++[1].
This software needed to be able to send and receive data as
well as control external hardware. User input is a critical
part of the robots operation, so this needed to be
incorporated in with the software[2]. In order to write
software to work correctly with the hardware, a set of
protocols was first agreed upon. These include what the
robot would be capable of doing, what information would
need to be sent to external control circuitry, and what
input would be read into the robot’s computer.

2. SOFTWARE DESIGN

Initially, the operation of the robot was to be quite
simple; it was to be able to move forward and backward
and turn left or right. Keeping these commands separate
(i.e. not turning right while moving forward) simplified
distance calculations, and with the use of optical encoders
attached to the wheels, this data was easily gathered. The
direction heading was measured with the use of a digital
compass that output the direction in a binary number.

2.1. Robot Control
The user controls robot movement in one of two ways.

The first possibility is a real-time instruction that tells the
robot to execute a particular command until another is
given. Essentially, the operation is similar to that of a
remote controlled car. The other possibility is a list of
commands for to be executed in a particular order. The
data contained in this list includes the direction of which
the robot is to go, the length at which the robot is to
execute the command, and the speed at which the
command is to be executed. The direction commands can
be one of five choices; forward, reverse, left, right, and
stop. The distance command is either a distance in feet to
travel, or an angle in degrees at which to turn. This
command is limited to a number of 180 or less to

 #2002SECon-SEC000: page 2

accommodate an 8-bit or smaller number. Since 180
degrees is half a turn and less then the 255 units available
in an 8-bit number, it was used as the limiting factor.
Longer distances are simply accomplished by a repetition
of commands until the desired distance or direction is
achieved. The speed is to be one of four settings being
stop, slow, medium or fast.

The user interface is set up for ease of use, as it
resembled the directional pads of a game controller as seen
in figure 1. The user has selection boxes were either real-
time mode or command list mode can be chosen. On the
command list side, an add command button will add a
command to the list of commands to be sent the robot.
The “Send Commands” button will send the list of
commands to the robot and clear out the current command
list. The real-time side executes each command upon
pressing a directional button. If the “Forward” button is
pressed then a forward command is sent, along with its
speed, to the robot

2.2. Communication Between Computer and Robot
The c++ code for sending receiving data through a serial

port was found and broken down for use in the controlling
software. The basics of this code were driven by an
interrupt type function. Upon detecting a byte through the
serial port, the software would store that byte, and then
perform the necessary actions upon it [3]. It was this part
that was incorporated into the code.

The communication path chosen for the robot were RF
development boards. These boards allowed bytes to be
transmitted from one computer to another without a hard
wired connection. Once a byte is sent to the serial port, it
is processed by the hardware on the development board
and transmitted to the receiver board, which then
processes the data and sends it to the robots serial port, the
computer never sees any difference between this type of
connection and a hard wired connection [4]. Currently,
only one-way communication is available, that is the base
computer sends and the robot receives.

This communication hardware has a range of 1000 feet,
but is susceptible to some noise [4]. Occasionally
erroneous bytes are detected that have no meaning. The
hardware does not see these as problematic data and sends
it to the robots serial port along with the acceptable data.
The software on the robot must distinguish between what
is usable data and what is garbage. Through methods of
error detection and correction, this is accomplished.

Redundancy was chosen as the method of error
correction for this problem. By sending out the same data
repeated times, this is a simple yet effective way to assure
that the robot receives what it is supposed to [5]. Also
added into the redundancy for added protection is a set of
start, stop, and clear bytes that would trigger the robots
receiving process.

The transmitting program on the base computer was
created so that a packet of information containing all

Figure 1 – Transmitting computer’s user

 #2002SECon-SEC000: page 3

necessary instructions was sent to the robot. This packet
includes the start and stop bytes, the command, direction,
and speed bytes, and a clear byte between each command.
Each command is sent three times to accomplish the
redundancy. Figure 2 shows what this packet contains.

Figure 2 – Transmission packet

The robot’s computer consists of a miniature 486

motherboard running Windows 95. Upon turning on of
the robot, the receiving program starts and waits for data
from the serial port. Once data is received the processing
is started and the commands are executed.

The receiving program sits idle while waiting for the
packet of instructions. Once it sees the start byte it begins
storing the following byte into their correct variables. The
software uses the clear byte incase an error occurred and
not all commands were received properly in a cycle of
redundancy. The program expects to receive three bytes of
data for each command; if it records only two bytes then
receives the clear byte, it know that an error occurred and
it stores the next bytes in the following commands. Once
the stop byte has been received, the error correction
process is started.

Each instruction is an 8 bit binary number, and each set
of these instructions is compared to correct any errors that
may have been picked up through the transmission
process. This is done by comparing each bit of the
instruction to the same bit of the other two instructions. If
two of the three match then that bit is considered correct
and the next bit is processed. Once the software has gone
through each of the three instruction sets the commands
are executed and the process is started again. Figure 3
shows the effect of a 1 being transmitted that picks up a
zero bit instead. The 1 is transmitted three times by the
base computer, however the receiver detected two 1’s and
a zero. This data is then processed and the correct bit is
stored as the proper command. This process is performed
on each bit in the command byte that is sent out to the
robot. Figure 4 shows the same process only with a 0
being sent three times and 1 being detected as an error.

Figure 3 – Correcting data that was supposed to be 1

Figure 4 – Correcting data that was supposed to be 0

Figure 5 shows the basic logic equations for completing

these operations, resulting in a correct instruction byte.

Byte1 AND Byte2 = Byte12

Byte1 AND Byte3 = Byte13

Byte2 AND Byte3 = Byte23

Byte12 OR Byte13 OR Byte23 = Instruction

Figure 5 – Logic operation performed on received bytes

In order for the robot to know what to do, the commands
are sent out through the parallel port of the robot’s on-
board computer. Several eight-bit pieces of information
are sent out and interpreted by the robots motor drive
circuitry. When the robot has completed the task, a signal
is sent back in through the parallel port and the next
command can be executed.

2.3. Output to Motor Control

The motor control protocols were designed to
accommodate the onboard computer’s 8-bit parallel output
[6]. It was decided that by using 2 bits as address bits and
the remaining 6 as data bits, the parallel port could
simulate a 24-bit output, as seen in figure 6. The first two
bits let the hardware know which set of data was being
output; then the data was latched into the hardware until
all 24 bits had been read and the motor controls would
respond appropriately. The software had the task of
translating the commands into a string of 24 bits, which
was then sent to the parallel port.

 #2002SECon-SEC000: page 4

Figure 6 – Converting 8-bit data to 24-bit data

3. Test Procedures

As the software was being created, numerous scenarios

were tested. Initially the behavior of the RF development
board had to be monitored. To accomplish this, a simple
program was written that would display whatever the
receiver board detected. This is where random bytes were
noticed. Often these were the result of other RF devices
operating at similar frequencies such as portable
telephones and a wireless camera that was to be used on
the same robot.

Communication between the base computer and the
robot’s computer was tested with a crossover serial cable
connected between the computers’ two serial ports. This
functioned as a medium that allowed for the testing of
motor control protocols without random bytes interfering.
Once all bugs were worked out and the control protocols
were functioning properly, the error correction was added
to the software. It was first tested using the cable; and
errors were intentionally put through.

Finally the RF boards were connected in place of the
crossover cable and the software was again tested. Testing
consisted of operating the robot’s motors with the various
commands at different distances from the base computer.

4. Conclusion

At the time of completion of the control software, not all

of the mechanical aspects of the robot had been finished.
This prevented any field-testing of the robots operation.
The test results that came from testing the software with
partially working components showed that the programs
successfully did their job. While the software was
running, the robot never performed any unexpected
actions.

Upon completion of the robot, field-testing will be
conducted to verify full functionality of the robot. Future
software modifications may include further investigation
of various error and detection methods.

REFERENCES
1. Gurewich, Nathan, “Sam’s Teach Yourself Visual C++ 5”, Sam’s

Publishing, 1997.
2. Kruglinski, David, “Programming Microsoft Visual C++”, Microsoft

Press, 1998.
3. Bergsman, Paul, “Controlling the World With Your PC”, HighText,

1994.
4. LINX Technologies, “HP Series-II Receiver and Transmitter Design

Guide”, 1999.
5. LINX Technologies, “Considerations for Sending Data With the HP

Series”, Application Note AN-00160, 1998.
6. Nelson, Mark, “Serial Communications Developer’s Guide”, IDG

Books Worldwide, Inc., 2000.

BIOGRAPHIES
Matt Lister
10262 Old Cordova Rd
Easton, MD 21601

E-mail: listerm@etown.edu

Matt Lister is a senior at Elizabethtown College where he is majoring in
computer engineering. Prior to college, Matt graduated from Easton High
School in 1998. He has completed several robotics projects including a
multifunctional mobile robot, a simple task mobile robot, and simulation of
mobile robot movement.

Joseph T. Wunderlich
Elizabethtown College
One Alpha Drive
Elizabethtown, PA, 17022

E-mail: wunderjt@etown.edu

Joseph Wunderlich is an Assistant Professor of Computer Science and
Computer Engineering at Elizabethtown College. He came to Elizabethtown
from Purdue University where he was an Assistant Professor of Electrical
and Computer Engineering Technology. Prior to that he worked as a
researcher and hardware development engineer for IBM on large-scale
multiprocessor computer systems. Dr. Wunderlich received his Ph.D. in
Electrical and Computer Engineering from the University of Delaware, his
Masters in Engineering Science/Computer Design from The Pennsylvania
State University, and his BS in Engineering from the University of Texas at
Austin. Dr. Wunderlich is a member of IEEE and ASEE.

mailto:bowles@engr.sc.edu�
mailto:wunderjt@etown.edu�

	Joseph T. Wunderlich; Elizabethtown College; Elizabethtown, PA

