Robotic Arm Design

Joseph T. Wunderlich, Ph.D.

Robotic Arms "Lunar Roving Vehicle" (LRV)

Human Arms do the dexterous "manipulation" work on manned missions

Image from: Young, A.H. *Lunar and planetary rovers: the wheels of Apollo and the quest for mars*, S

"Lunar Roving Vehicle" (LRV) *Robotic Arms*

Human Arms do the dexterous "manipulation" work on manned missions

1971

Plate 40 Charlie Duke photographed John Young as he took a sample at the Station 10 stop. Young remarked that driving conditions as a result of Sun angle and direction of the traverse made it nearly impossible to detect surface hazards in front of the LRV. (NASA)

Mars Rovers Mars Pathfinder "Sojourner"

1996 Robotic Arms

Alpha Proton X-Ray Spectrometer

Image from: http://marsprogram.jpl.nasa.gov

"APXS Deployment Mechanism" *(Robotic Arm)*

Mars Rovers "Spirit" & "Opportunity" *2004*

Robotic Arms

"Instrument Deployment Device" *(Robotic Arm)*

Mars Rovers

"Spirit" & "Opportunity" *2004 Robotic Arms*

"Instrument Deployment Device" *(Robotic Arm)*

Mars Rovers

Mars Science Lab *2000's Robotic Arms*

Image from: http://nssdc.gsfc.nasa.gov/planetary/mars_future.html

Mars Rovers ESA

 "ExoMars" Rover **Concept**

2000's and 2010's Robotic Arms

It has a drill

Image from:<http://www.nasa.gov/centers/jpl/news/urey-20070209.html>

Robotic Arms

Before studying advanced robotic arm design we need to review basic manipulator kinematics. So let's look at pages 9 and 10 of:

Wunderlich, J.T. (2001). **[Simulation vs. real-time control; with](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION14sim_vs_RT.pdf) [applications to robotics and neural networks.](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION14sim_vs_RT.pdf)** In *Proceedings of 2001 ASEE Annual Conference & Exposition, Albuquerque, NM*: (session 2793), [CD-ROM]. ASEE Publications.

Kinematics review *Robotic Arms*

Figure 7. A two degree-of-freedom robotic-arm.

where \vec{x}_e is the vector that locates the Cartesian position of the robotic-arm's end-effector with respect to the base. The end-effector position \vec{x}_e is related to the joint angles by

$$
\vec{x}_e = \begin{bmatrix} x_e \\ y_e \end{bmatrix} = \begin{bmatrix} L_1 \cos(\theta_1) + L_2 \cos(\theta_1 + \theta_2) \\ L_1 \sin(\theta_1) + L_2 \sin(\theta_1 + \theta_2) \end{bmatrix}
$$
\n(2)

and the end-effector velocity (i.e., the derivative of \vec{x}_e with respect to time) is

$$
\dot{\vec{x}}_e = d\vec{x}_e / dt = \begin{bmatrix} \dot{x}_e \\ \dot{y}_e \end{bmatrix} = \begin{bmatrix} dx_e / dt \\ dy_e / dt \end{bmatrix}
$$
\n(3)

FROM: Wunderlich, J.T. (2001). **[Simulation vs. real-time control; with applications to robotics and neural networks](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION14sim_vs_RT.pdf).** In *Proceedings of 2001 ASEE Annual Conference & Exposition, Albuquerque, NM*: (session 2793), [CD-ROM]. ASEE Publications.

Kinematics review

$$
\frac{dx_e}{dt} = \frac{\partial x_e}{\partial \theta_1} \frac{d\theta_1}{dt} + \frac{\partial x_e}{\partial \theta_2} \frac{d\theta_2}{dt}
$$
 (4)

$$
\frac{dy_e}{dt} = \frac{\partial y_e}{\partial \theta_1} \frac{d\theta_1}{dt} + \frac{\partial y_e}{\partial \theta_2} \frac{d\theta_2}{dt}
$$
 (5)

we obtain:

$$
\begin{bmatrix} dx_e/dt \\ dy_e/dt \end{bmatrix} = \begin{bmatrix} \frac{\partial x_e}{\partial \theta_1} & \frac{\partial x_e}{\partial \theta_2} \\ \frac{\partial y_e}{\partial \theta_1} & \frac{\partial y_e}{\partial \theta_2} \end{bmatrix} \begin{bmatrix} d\theta_1/dt \\ d\theta_2/dt \end{bmatrix}
$$
 (6)

or simply.

$$
\dot{\vec{x}}_{\bullet} = J_e \dot{\vec{\theta}} \tag{7}
$$

where J_{ρ} is the "Jacobian" matrix:

$$
\mathbf{J}_{\bullet} = \begin{bmatrix} -L_1 \sin(\theta_1) - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos(\theta_1) + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \tag{8}
$$

which gives us our linear transformation between Cartesian end-effector velocities and roboticarm joint-angle velocities. For simulating this system, we also need the Cartesian position of the robotic-arm's elbow with respect to it's base:

FROM: Wunderlich, J.T. (2001). **[Simulation vs. real-](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION14sim_vs_RT.pdf)**

$$
=J_{\rm e}^{-1}\dot{\vec{x}}_{\rm e} \tag{10}
$$

 (9)

where J_e^{-1} is the inverse of J_e .

time control; w applications to neural network *Proceedings of* **Annual Conference** *Exposition, Albuquerque, NM*: (session 2793), [CD-ROM]. ASEE Publications.

What kind of arm has OPTIMAL DEXTERITY?

(i.e., More **D**egrees **O**f **F**reedom than you *need*)

A Redundant Manipulator?

Robotic Arms

Human Arm is a 7 DOF Redundant Manipulator

3 DOF 1 DOF 3 DOF

What kind of arm has OPTIMAL DEXTERITY?

A Hyper-Redundant Manipulator? (i.e., Many more **D**egrees **O**f **F**reedom than "*needed"*)

Robotic Arms

OPTIMAL DEXTERITY?

Robotic Arms

 Would many Hyper-Redundant Manipulators be optimal? (i.e., Each with many more **D**egrees **O**f **F**reedom than "*needed"*)

J. Wunderlich Related Publications

Wunderlich, J.T. (2004). **[Simulating a robotic arm in a box: redundant](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf) [kinematics, path planning, and rapid-prototyping for enclosed spaces.](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf)** In *Transactions of the Society for Modeling and Simulation International*: Vol. 80. (pp. 301-316). San Diego, CA: Sage Publications.

Wunderlich, J.T. (2004). **[Design of a welding arm for unibody automobile](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_WeldingArm10_paperSUBMITrevisedFINAL.pdf) [assembly](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_WeldingArm10_paperSUBMITrevisedFINAL.pdf).** In *Proceedings of IMG04 Intelligent Manipulation and Grasping International Conference, Genova, Italy,* R. Molfino (Ed.): (pp. 117-122). Genova, Italy: Grafica KC s.n.c Press.

What Dr. Wunderlich saw in a US Chrysler automobile assembly plant in 1993 This inspired his PhD research

(this is a recent video of a Kia plant):

Example for Welding Tasks

Example for Welding Tasks

Simulation (initialization)

Simulation (go to task start point)

Simulation (perform welding task)

Path Planning

- Pseudo-inverse velocity control
- Attractive poles
- Repelling fields

Path Planning

• Pseudo-inverse velocity control

$$
\dot{\mathbf{x}}_o = \mathbf{J}_o \dot{\mathbf{\theta}}
$$
\n
$$
\dot{\mathbf{x}}_o = \mathbf{J}_o \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e + \mathbf{J}_o (\mathbf{I} - \mathbf{J}_e^{\#} \mathbf{J}_e) \dot{\Psi}
$$
\n
$$
\dot{\mathbf{\theta}} = \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e + \left[\mathbf{J}_o (\mathbf{I} - \mathbf{J}_e^{\#} \mathbf{J}_e) \right]^{\#} (\dot{\mathbf{x}}_o - \mathbf{J}_o \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e)
$$

by specifying a desired end-effector velocity and a desired obstacle-avoidance-point velocity

For derivation of these equations, read pages 1 to 4 of: Wunderlich, J.T. (2004). **[Simulating a robotic arm in a box: redundant](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf) [kinematics, path planning, and rapid-prototyping for enclosed spaces.](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf)** In *Transactions of the Society for Modeling and Simulation International*: Vol. 80. (pp. 301-316). San Diego, CA: Sage Publications.

Path Planning • Pseudo-inverse velocity control – With new proposed methodology here:

$$
\dot{\boldsymbol{\Theta}} = \mathbf{J}_{e}^{\#} \dot{\mathbf{x}}_{e} + \sum_{i=1}^{N} \Big[[\mathbf{J}_{o_{i}} (\mathbf{I} - \mathbf{J}_{e}^{\#} \mathbf{J}_{e})]^{\#} \dot{\Lambda} \Big]
$$

by specifying a desired end-effector velocity and multiple desired obstacle-avoidance-point velocities:

$$
\dot{\Lambda} = \dot{\mathbf{x}}_o - \mathbf{J}_o \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e
$$

For derivation of these equations, read pages 1 to 4 of: Wunderlich, J.T. (2004). **[Simulating a robotic arm in a box: redundant](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf) [kinematics, path planning, and rapid-prototyping for enclosed spaces.](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf)** In *Transactions of the Society for Modeling and Simulation International*: Vol. 80. (pp. 301-316). San Diego, CA: Sage Publications.

Path Planning

FROM: Wunderlich, J.T. (2004). Simulating a robotic arm in a box: redundant kinematics, path planning, and rapid-prototyping for enclosed spaces. In Transactions of the Society for Modeling and Simulation nternational: Vol. 80. (pp. 301-316). San Diego, CA: Sage **Publications**

end-effector

In general, for an n -DOF planar arm, the end-effector position is given by

$$
\mathbf{x}_{e} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} L_{i} * \left(\cos \left(\sum_{j=1}^{i} \theta_{j} \right) \right) \\ \sum_{i=1}^{n} L_{i} * \left(\sin \left(\sum_{j=1}^{i} \theta_{j} \right) \right) \end{bmatrix}, \quad (1)
$$

and the end-effector velocity is

$$
\dot{\mathbf{x}}_{e} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \theta_{1}} & \frac{\partial x}{\partial \theta_{2}} & \cdots & \frac{\partial x}{\partial \theta_{n}} \\ \frac{\partial y}{\partial \theta_{1}} & \frac{\partial y}{\partial \theta_{2}} & \cdots & \frac{\partial y}{\partial \theta_{n}} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix},
$$
\n(2)

or simply

$$
\dot{\mathbf{x}}_{e} = \mathbf{J}_{e} \dot{\theta},\tag{3}
$$

where J_e is the Jacobian matrix. Assuming $n > m$, where m is the dimension of the workspace, we have a redundant manipulator, and the general form of the least squares approximate solution to this underdetermined set of linear equations is

$$
\dot{\theta} = \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e + (\mathbf{I} - \mathbf{J}_e^{\#} \mathbf{J}_e) \dot{\Psi},
$$
(4)

Path Planning

FROM: Wunderlich, J.T. (2004). Simulating a robotic arm in a box: redundant kinematics, path planning, and rapid-prototyping for enclosed spaces. In Transactions of the Society for Modeling and Simulation nternational: Vol. 80. (pp. 301-316). San Diego, CA: Sage **Publications**

where J_{ϕ}^* is the pseudo-inverse, I is an identity matrix, $\dot{\Psi}$ is an arbitrary joint-velocity vector that can be used for a variety of optimization and path-planning tasks, and $(I - I)$ $J_e^*J_e \Psi$ is the projection of Ψ onto the null space of J_e [4]. The pseudo-inverse J_{α}^{*} is

$$
\mathbf{J}_{\mathbf{e}}^{\#} = \mathbf{J}_{\mathbf{e}}^T (\mathbf{J}_{\mathbf{e}} \mathbf{J}_{\mathbf{e}}^T)^{-1}
$$
 (5)

here since $(m < n)$, and J_e is assumed to be of rank m. Equation (4) represents the least squares solution that minimizes the error norm.

$$
\min \|\dot{\mathbf{x}}_{e} - \mathbf{J}_{e}\dot{\theta}\|,
$$
\n(6)

and focuses on the *exactness* of the solution [5]. The first term of (4) represents the minimum norm solution among all solutions provided by (4) by also satisfying

$$
\min \|\dot{\theta}\|,\tag{7}
$$

which relates to the *feasibility* of implementing a solution since excessively large joint-angle velocities are not realizable $[5]$.

The pseudo-inverse velocity-control part of the proposed path-planning technique is a variation of that used in Maciejewski and Klein [8], where Ψ in (4) is used to repel a point X_o on an arm away from obstacles by commanding a Cartesian velocity:

$$
\dot{\mathbf{x}}_o = \mathbf{J}_o \dot{\theta},\tag{8}
$$

where (o) designates the point on the arm closest to an obstacle *(obstacle-avoidance point)*. In Maciejewski and Klein $[8]$, (4) is substituted into (8) to yield

$$
\dot{\mathbf{x}}_o = \mathbf{J}_o \mathbf{J}_e^{\dagger} \dot{\mathbf{x}}_e + \mathbf{J}_o (\mathbf{I} - \mathbf{J}_e^{\dagger} \mathbf{J}_e) \dot{\Psi},\tag{9}
$$

where $J_{\varphi}J_{\varphi}^{\#}\dot{x}_{e}$ is the Cartesian motion at the obstacleavoidance point to satisfy the end-effector velocity constraint. The second term of (9) represents the mapping of the $(I - J_e^*J_e)\dot{\Psi}$ null-space joint-velocity vector to a Cartesian vector at the obstacle-avoidance point. The vector $\dot{\Psi}$ is found by rewriting (9) as

$$
\dot{\mathbf{X}}_o - \mathbf{J}_o \mathbf{J}_e^{\#} \dot{\mathbf{X}}_e = \mathbf{J}_o (\mathbf{I} - \mathbf{J}_e^{\#} \mathbf{J}_e) \dot{\Psi}, \quad (10)
$$

where $\dot{\mathbf{x}}_o - \mathbf{J}_o \mathbf{J}_e^* \dot{\mathbf{x}}_e$ is the desired obstacle-avoidance point Cartesian velocity:

$$
\dot{\Lambda} = \dot{\mathbf{x}}_o - \mathbf{J}_o \mathbf{J}_e^{\dagger} \dot{\mathbf{x}}_e, \qquad (11)
$$

and $J_0(I - J_e^*J_e)$ is the transformation of the orthogonal projection operator from the end effector to the obstacleavoidance point:

$$
\Gamma = \mathbf{J}_o(\mathbf{I} - \mathbf{J}_e^{\#}\mathbf{J}_e). \tag{12}
$$

Using (11) and (12) , we can rewrite (10) as

$$
\dot{\Lambda} = \Gamma \dot{\Psi},\tag{13}
$$

where the general form of the least squares $\dot{\mathbf{\Psi}}$ solution is

$$
\dot{\Psi} = \Gamma^* \dot{\Lambda} + (\mathbf{I} - \Gamma^* \Gamma) \dot{\beta}, \tag{14}
$$

where I is an identity matrix, β is an arbitrary vector, and $(I - \Gamma^* \Gamma) \beta$ is the projection of β into the null space of Γ .

This equation represents the least squares solution that minimizes the error norm:

$$
\min \|\dot{\Lambda} - \Gamma \dot{\Psi}\|.
$$
 (15)

The first term of (14) represents the minimum-norm solution among all of the solutions provided by (14) by also satisfying

$$
\min \|\dot{\Psi}\|,\tag{16}
$$

which has the effect of increasing the minimum obstacle distance $[8]$.

Substituting (14) into (4) yields

$$
\dot{\Theta} = \mathbf{J}_{e}^{*} \dot{\mathbf{x}}_{e} + (\mathbf{I} - \mathbf{J}_{e}^{*} \mathbf{J}_{e}) \Gamma^{*} \dot{\Lambda} \n+ (\mathbf{I} - \mathbf{J}_{e}^{*} \mathbf{J}_{e}) [(\mathbf{I} - \Gamma^{*} \Gamma) \dot{\beta}].
$$
\n(17)

In Nakamura, Hanafusa, and Yoshikawa [7], the third term of (17) is used for a tertiary-priority task if *enough* available redundancy remains after the higher priority tasks are satisfied. In Maciejewski and Klein [8], this term is dropped, and (17) is expanded to yield

$$
\hat{\Theta} = \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e + (\mathbf{I} - \mathbf{J}_e^{\#} \mathbf{J}_e)
$$
\n
$$
\left[\mathbf{J}_o (\mathbf{I} - \mathbf{J}_e^{\#} \mathbf{J}_e) \right]^{\#} (\dot{\mathbf{x}}_o - \mathbf{J}_o \mathbf{J}_e^{\#} \dot{\mathbf{x}}_e).
$$
\n(18)

In Maciejewski and Klein [8], it is shown that the second term of (18) can be reduced to $[J_0(I - J_e^*J_e)]^{\#}(\dot{x}_o - J_oJ_e^{\#}\dot{x}_e)$ since the projection operator $(I - J_e^*J_e)$ is both hermetian and idempotent, and therefore joint-angle velocities are governed by

$$
\dot{\Theta} = \mathbf{J}_{e}^{\#} \dot{\mathbf{x}}_{e} + \left[\mathbf{J}_{o} (\mathbf{I} - \mathbf{J}_{e}^{\#} \mathbf{J}_{e}) \right]^{\#}
$$
\n
$$
(\dot{\mathbf{x}}_{o} - \mathbf{J}_{o} \mathbf{J}_{e}^{\#} \dot{\mathbf{x}}_{e}), \qquad (19)
$$

by specifying a desired end-effector velocity \dot{x}_e and a desired obstacle-avoidance point velocity $\mathbf{\Lambda} = \dot{\mathbf{x}}_o - \mathbf{J}_o \mathbf{J}_e^* \dot{\mathbf{x}}_e$ through the selection of $\dot{\mathbf{x}}_o$.

The proposed technique for avoiding many obstacles within a complex enclosure is a variation of (19) and is given by

$$
\dot{\Theta} = \mathbf{J}_{e}^{\#} \dot{\mathbf{x}}_{e} + \sum_{i=1}^{N} \left[[\mathbf{J}_{o_{i}} (\mathbf{I} - \mathbf{J}_{e}^{\#} \mathbf{J}_{e})]^{\#} \dot{\Lambda} \right], \tag{20}
$$

where Λ is commanded directly, and where N is the number of obstacle-avoidance points, one fixed at each of the arm's joints (with the exception of the first two since they remain outside the enclosure). Up to eight obstacleavoidance points have been simulated (*i.e.*, on a 10-DOF arm). Here, unlike in (19) , there is no need to locate these points on the arm since they are fixed; however mid-link collisions with obstacles become possible and are avoided by setting minimum allowable distances from obstacles.
Path Planning

- Pseudo-inverse velocity control
	- Technique made feasible by:
		- Attractive Poles
		- Repelling Fields
			- Proportional to obstacle proximity
			- Direction related to poles (or goal)
			- Limited range

Search for Feasible Designs

1) Guess initial kinematics

- Link-lengths and DOF to reach furthest point in unibody
- 2) Find repelling-velocity magnitudes
- 3) Use heuristic(s) to change link-lengths
	- Test new designs
	- Can minimize DOF directly

Example Search

- Using heuristic that changes link lengths by 10cm, two at a time, results in 3489 new designs from an original (90,120,95,50,40,)cm 5-DOF design
	- This includes 104 4-DOF designs
- Another search; one designed specifically to minimize DOF, quickly yields 15 4-DOF designs (and 41 5-DOF designs)

Selecting a Design

- Compare measures taken during search – DOF
	- Joint-angle displacement
	- Manipulability
	- Simulated speed
	- Consumption of available redundancy

DOF (minimize)

- Decrease initial financial cost
- Decrease financial operating costs

Joint-angle displacement (minimize)

- Related to the mechanical work required to maneuver
	- Increase usable life of equipment
	- Decrease financial operating costs

Manipulability (maximize)

• Indication of how far arm configuration is from singularities over trajectory

$$
w = \sqrt{\det(\mathbf{J}\mathbf{J}^T)}
$$

$$
\overline{w}_{12} = \left[\frac{\int_{1}^{t_2} (\sqrt{\det(\mathbf{J}\mathbf{J}^T)}) dt}{t_2 - t_1} \right]
$$

$$
\hat{\overline{w}}_{12} = \left[\frac{\overline{w}_{12}}{\hat{w}_{\text{max}}} \right]
$$

New proposed measure here: Consumption Of Available Redundancy (COAR) (minimize it)

- Indication how redundancy used over trajectory
- COAR varies significantly over trajectory when joint angle changes vary significantly due to obstacle avoidance

$$
COAR = \left[\frac{\left\|(\mathbf{I} - \mathbf{J}_{e}^{H} \mathbf{J}_{e})\dot{\Psi}\right\|}{\left\|\mathbf{J}_{e}^{H} \dot{\mathbf{x}}_{e}\right\|}\right] = \left[\frac{\left\|\sum_{i=1}^{N}[\mathbf{I} \mathbf{J}_{o_{i}} (\mathbf{I} - \mathbf{J}_{e}^{H} \mathbf{J}_{e})]^{\#} (\dot{\mathbf{x}}_{o_{i}} - \mathbf{J}_{o_{i}} \mathbf{J}_{e}^{H} \dot{\mathbf{x}}_{e})\right\|}{\left\|\mathbf{J}_{e}^{H} \dot{\mathbf{x}}_{e}\right\|}\right]
$$

COAR (Example highly-constricted workspace)

AVERAGE COAR = 0.9532

Simulated speed (maximize)

- Simply number of simulation steps in a trajectory
	- Indication of how trajectory compromised
		- Local minima
		- High COAR

"High-Quality" Final Design (selected from all feasible designs from search)

How Robust is Methodology?

- Dependent on initial configuration?
- Can escape local minima?
- Can deal with singularities?
- Can be extended to more complex workspaces?

Can escape local minima?

Can deal with singularities?

- Considered "damped least squares" and "weighting matrix"
- Considered treating singularity configurations as obstacles
	- but could push arm into repelling fields
- Using "manipulability measure" to compare all candidate designs
	- "*natural selection"*

Extend methodology to more complex workspaces

Create enclosure from simulation Primitives

EXAMPLE K_i 's for $t_i = 20$, $d_{ABORT} = 0$, $V_i = V_e = 1$

 $K_j = V_j V_e \left[1 - \left(\frac{d_j - d_{ABORT}}{t_j} \right)^E \right]$

Note: If a goal or fixed-trajectory task is specified within primitive, the attractive pole is disabled and repellingangles are set to 90 degrees.

How Robust is Methodology?

- Dependent on initial configuration? – Only somewhat
- Can escape local minima?
	- Yes
- Can deal with singularities? – Considered less desirable designs
- Can be extended to more complex workspaces?
	- Yes
Extended methodology to finding a set of designs for a more complex enclosure

Circles show elbows being repelled from surfaces

Results of a test design run where red arms are successful at reaching goal (red X) and blue arms are not.

Circles show elbows being repelled from surfaces

Using complex pathplanning and obstacle avoidance

Robotic Arm Design Selected Design from Search

Wunderlich, J.T. (2004). **[Simulating a robotic arm in a box: redundant](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf) [kinematics, path planning, and rapid-prototyping for enclosed spaces.](http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_SIM6_046338_Wunderlich_original_PROOF.pdf)** In *Transactions of the Society for Modeling and Simulation International*: Vol. 80. (pp. 301-316). San Diego, CA: Sage Publications.

Robotic Arm Design

- This modified psuedoinverse path-planning works fine for rapidly prototyping designs
	- And can easily use simpler control scheme for real-time control if concerned about psuedoinverse velocity control implementation difficulties
- Rapid prototyping of *quality designs*
	- Dexterous
	- Minimal DOF
	- Low energy
	- Good geometric *fit*
	- Semi task-specific

Future Possibilities Robotic Arm Design

- 3-D
	- Tubular primitives
	- Cube primitives
- Dynamic Model to optimize forces for cutting, drilling, material handling, etc.
- Learn environment (anticipate walls)
- Adaptive repelling fields
- Use COAR to drive design process
- Probabilistically complete search

OPTIMAL DEXTERITY

Robotic Arms

Would many Hyper-Redundant Manipulators be optimal?

Other Dr. Wunderlich PhD Research in early 1990's Telerobotics & Force-Feedback for assisting Quadriplegic Children

AI Dupont Children's Hospital, Applies Science & Engineering Lab

Wunderlich, J.T., S. Chen, D. Pino, and T. Rahman (1993). **Software architecture for a kinematically dissimilar master-slave telerobot**. In *Proceedings of SPIE Int'l Conference on Telemanipulator Technology and Space Telerobotics*, Boston, MA: Vol. (2057). (pp. 187-198). SPIE Press.

Other Dr. Wunderlich PhD Research in early 1990's Telerobotics & Force-Feedback for assisting Quadriplegic Children AI Dupont Children's Hospital, Applies Science & Engineering Lab *Robotic Arms*

FIGURE 3. Force Reflection Scheme

Wunderlich, J.T., S. Chen, D. Pino, and T. Rahman (1993). **Software architecture for a kinematically dissimilar master-slave telerobot**. In *Proceedings of SPIE Int'l Conference on Telemanipulator Technology and Space Telerobotics*, Boston, MA: Vol. (2057). (pp. 187-198). SPIE Press.

Robotic Arms

From 1992 J. Wunderlich talk at A.I. Dupont Research Institute including excerpts from several [advanced robotics texts](http://users.etown.edu/w/wunderjt/ITALY_2009/TALK_Wunderlich_Robotic_Arm_Review_UDel_PENN_Oxford_Cambridge.pdf)

Coordinate frames

Robotic Arms

Source: **S. .B. Niku,** *Introduction to Robotics: Analysis, Systems, Applications***, Prentice Hall, July 30, 2001.**

Tool reference-frames

Source: **S. .B. Niku,** *Introduction to Robotics: Analysis, Systems, Applications***, Prentice Hall, July 30, 2001.**

Robot Workspace Envelope Defines reach of end-effector

Robotic Arms

Source: **<http://faculty.petra.ac.id/dwahjudi/private/robot1.htm>**

Robot Workspace Envelope

Robotic Arms

"robot's energy map envelope in colours, an operator can keep the workpiece in the green zone and avoid the orange zone to save energy"

Source: **<http://faculty.petra.ac.id/dwahjudi/private/robot1.htm>**

Robotic Arms

Source: <https://www.used-robots.com/blog/viewing/robotics-industry-growing-with-used-robots>

Robotic Arms

٠ Source: http://robotpalletizing.co.uk/201

Robotic Arms

Source: <http://research.fit.edu/rassl/motoman-sv3.php>

Robotic Arms

VIDEO: <https://www.youtube.com/watch?v=361jCrhLSrA>

Robotic Arms

VIDEO: [https://www.youtube.com/watch?v=p6NwH3G0V6Y /](http://kuka-robotics.com/usa/en/products/mobility/KMR_QUANTEC/)

Robotic Arms

Source: <https://www.pilz.com/en-AU/company/news/articles/073932>

At Legoland in San Diego, CA

You pick level 1 to 5 to ride. And people squirt water canons at you while you ride

Dr. Wunderlich rode at level 4

legoland robot ride level 5

VIDEO: <https://www.youtube.com/watch?v=CVmX-NDSo2c>

Robotic Arms

VIDEO: <https://www.youtube.com/watch?v=tIIJME8-au8>

Industrial Robot Manufacturers

Robotic Arms

Fanuc (Japanese)

Source: <http://www.fanuc.co.jp/en/product/robot/>

Industrial Robot Manufacturers Fanuc (Japanese)

Industrial Robot Manufacturers Fanuc (Japanese)

Robotic Arms

 $1:55 / 2:43$

VIDEO: <http://cdlms-inc.com/products.html>

Industrial Robot Manufacturers Fanuc (Japanese)

Robotic Arms

\$250,000 Robot offered by Funuc to Etown College and J. Wunderlich after he visited Detroit Fanuc plant

Terms:

- *1) College pays \$25,000*
- *2) Dr. Wunderlich to teach Fanuc Training to local industry*