Europa: Processes and Habitability Bob Pappalardo Le Propulsion Laboratory

Mosaic by Ted Stryk

Europa: Complex Geology

Europa's Interior: Gravity Data

Axial moment of inertia from Doppler gravity data: $\Rightarrow C/MR^2 = 0.346 \pm 0.005$ $\Rightarrow H_2O$ -rich crust:

[Anderson et al., 1998]

Europa's Eccentric Orbit

- Eccentric orbit (e = 0.01).
- Tide ~30 m if ice shell is decoupled by ocean.
- Libration (constant rotation rate; variable orbital speed).
- Tidal deformation dissipates energy: *tidal heating*.
- Misalignment of tidal bulge promotes *nonsynchronous rotation*.

Europa Stress Mechanisms: Nonsynchronous Rotation Stress

- Nonsynchronous rotation is predicted if ice shell is decoupled from rocky mantle.
- Provides the best match to global lineament patterns.
- Suggests decoupling by liquid water.

Stressing Europa II: Orbital Stress

Ŧ	1	1	X	1	ł	1	1	1	1	-+-	+		1	1	X	1	1	l	1	1	1	+
+	*	1	1	1	Ŧ	1	1	1	-	+	+	+	*	1	١	1	H	1	1	1	-	÷
ł	1	*	١	ł	ł	ł	1	1	٩.	Y	I	T	1	*	١	1	ł	1	1	8	Ň	1
+	×		V	1	ł	1	1		Χ.	+	+	+	*		١	1	ł	1	1	•	×	+
+	×	4	١		ŀ	1	Ū.	Sie.	×	+	+	+	×	1	1	I	ł		Ţ	-	×	+
+	+	-	ŀ	ſ	ł	ł	1	-	+	Fe l	nsi	on	+		Co	mp	ore	SS	ior		+	+
+	×	~	Ĩ	1	ł	ł	Ĩ	-	×	+	+	+	×	1	1	1	ł	1	t		×	+
t	×	•	1	1	1	1	1		+	+	+	t	X		1	1	ł	1	1	*	+	+
١	X	/	1	1	ł	١	V	x	÷.	Į.	L	1	*	ć	1	ł	ł	١	X	X	1	I
+	1	1	1	1	ł	1	X	N	*	+	+	+	1	1	1	1	ł	1	\mathbf{A}	1	1	+
+	1	1	1	1	+	ł	1	N	1	-	+-	+	1	1	1	1	ł	1	1	1	1	÷

—— 0.2 MPa

Ocean is necessary for sufficient tidal amplitude and stress!

Europa's Geology: Ridges

- Double ridges: extrusion or intrusion of water or warm ice?
- Shear heating along fracture plains may warm & melt ice.

Surface Composition

- "Non-ice" material shows shallow, asymmetrical IR absorptions.
- Candidate materials:
 - ♦ Hydrated sulfates salts
 (epsomite: MgSO4 7H₂O).
 - ◇ Hydrated sulfuric acid (H₂SO₄ • nH₂O).
 ◇ Hydronium (H₃O) & H₂O₂.
- SO₂ inferred from UV.
- Sulfur chains may explain red visible color.

Proposed Radiolytic Sulfur Cycle

Convection in Europa's Ice Shell

- Pits, spots, and domes suggest convection of ice shell.
- Tidal heating greatest in warm ductile ice near shell's base.
- Ice shell can convect if >20 km thick and tidally strained.

Convection in Europa's Ice Shell

- Circulation time scale $\sim 10^5$ yr.
- Thermal plumes cool as they rise.
- Segregation of low-eutectic impurities (chlorides or H₂SO₄ • nH₂O) may allow plumes to breach "stagnant lid."

Chaos Models

- Melt-through model:
 - ♦ Ice shell thins and melts above oceanic megaplumes.
 - ♦ But: requires huge heat flux, and ice flow may prevent thinning.
- Diapirism model:

♦ Ice convection partially melts salty ice causing *in situ* degradation.
♦ But plumes may cool too quickly to partially melt shallow ice.

Journey to Conamara Chaos

Cyclical Geological Activity?

- Mapping suggests geological changes:
 - ♦ Transition from ridged plains to chaos; waning activity.
- Strange for a surface just ~50 Myr old.
- Tidal heating and orbital evolution of the 3 resonant Galilean satellites are linked:
 - ♦ Possible cyclical tidal heating & geological activity.

Life in Europa's Hidden Ocean?

- Radiation destroys organics in upper ~10s cm of ice.
- Radiation of H₂O creates oxidants:
 ◇ H₂O₂ (hydrogen peroxide) found.
 - \diamond HCHO (formaldehyde) predicted.
 - ♦ K⁴⁰ decay \Rightarrow O₂, H₂.
- Sources of organic material:
 - \diamond CO₂ captured during accretion?
 - ♦ Organics from comet impacts:
 C≡N, C-H on Ganymede & Callisto.
- Hydrothermal activity at mantle?
- Better chance of life & detection if ocean & surface communicate.
- Activity may be non-steady-state.

Europa Geophysical Explorer

- Assess tidal effects to confirm the presence of a current global subsurface ocean.
- Characterize the properties of the ice shell and describe three-dimensional distribution of liquid water.
- Elucidate the formation of surface features and seek sites of current or recent activity.
- Identify and map surface composition with emphasis on compounds of astrobiological interest.
- Prepare for a future lander mission.

