80251 Microcontoller
Jumps and Calls 412z

JT Wunderlich PhD

~ oy ?8@55?1% Iﬁ'gf e@ons

Recall Minimal Computer Architecture

PROGRAM COUNTER (PC) addresses instructions to be fetched from memory
INSTRUCTION REGISTER receives fetched instruction

CONTROL LOGIC creates all routing signals after decoding the fetched instruction

ARITHMETIC LOGIC UNIT (ALU) performs arithmetic and logical manipulation of data and
addresses

REGISTERS (i.e.,general purpose registers) store intermediate results of calculations

STATUS REGISTER holds status flags and condition codes, and two control bits for picking
register bank to be in use

“MEMORY?” (i.e. “main memory”) stores data and instructions
STACK stores addresses (or processor status) for returning from program-calls or interrupts
INPUT/OUTPUT (“I/O”) often addressed as memory (i.e., memory-mapped 1/0)

RecaII M|n|mal Computer Arch|tecture

mfsﬁg Ir’i'gfr@eﬁons

Typical Instruction Format:

8 to 32 bits >

OP-code | Operand or location of operand | Control Bits

P
<

5 to 11 bits in OP-Code
Therefore 2°5=32 to 2°11=2048 different
machine instructions in “Instruction Set”

e Some simple Microcontrollers (e.g., PIC’s) have only 32

instructions
e Some large-scale machines (e.g., IBM S/390) have close

to 2000 instructions

m Typical Instruction Format:

. 8 to 24 bits >
OP-code | Operand or location of operand

<

8 bits in OP-Code

Therefore 2°8=256 possible machine
instructions in “Instruction Set”

B Program Counter (“PC”) 1s 24 bits

Therefore 2°24=16M of address space
= 000000 to FFFFFF hex

Separated into 255 64K segments
= 000000 to FFFFFF hex

m Typically use segment 00 for all data manipulation
= General purpose registers
= Direct and indirectly addressable RAM

= Bit addressable RAM
m Typically use segment FF (i.e., #255) for all code and constants

64K segments separated into 2K pages

- ?8@55'21% Iﬁ%f ns

Addressmg Modes vs. “Range
classifications

m Modes m Range
Immediate “Short” (Relative)
Register “Page” (Absolute)
Direct “Long” (Absolute)
Indirect m Within Segment
Indirect Offset Absolute just meaning not
relative

Page = 2K (.20
Segment = 64Kk (.. 2:16)

Qf '?l% |ﬁ'7§ @egéhs

ﬂ...-‘
-

Addressing Modes vs. Ranges

m Modes
Immediate means operand data is encoded by you into instruction
Register means operand data is in registers
Direct means operand data is at location encoded by you into instruction
Indirect means operand data is at location specified in a register

Indirect Offset means operand data is at location specified in a register plus
an “Offset” (encoded in instruction by you, or located in a register) that can be
used, for example, to allow you to step through locations in an array

Fats N EREHIOE T H e T
\...:':-. . 5 ':'. %}:“.._. ";.-Q_.-,_,a:_

o

R
b 7

r % -

Address RANGES
and Branch-target Address Formation
m “Short” (Relative)

(PC) € (PC) + Instruction length + “Radd”

m Radd = 1-byte relative address encoded into instruction (-128 to 127)
in 2’s compliment

m “Page” (Absolute within 211 = 2K page)
(PC) € (PC) + Instruction length
(PC bits 11 to 0) € “Sadd”

m Sadd = Assembler uses 1-byte encoded into instruction to create an
11-bit Sadd (e.g, mapped to a label — assembler error if label on another page)

m (PC bits 15 to 12) are fixed and indicate which page you are on

m “Long” (Absolute within 2™16 = 64k segment)
(PC) € (PC) + Instruction length
(PC bits 15 to 0) € “Ladd”

m [add = 2-bytes encoded into instruction

HHHHH

S LR
e TR o :
e g e -
e I’]
R
: [
: RN

Short (relatlve RANGE)

%@55?1@ m%t

..-'
—

INSTRUC When to Jump Other Actions

JC (C) =

JNC (C) not= 1

JB (bit address) = 1

JNB (bit address) not= 1

JBC (bit address) = 1 Make (bit address) = 0
CINE operand 1 not= operand 2 (C)=1if Op1<0Op2
DJINZ operand 1 not=0 Decrement first

JZ (A)=0

JNZ (A) not=0

SIMP Always (i.e., “unconditionally”)

Page (absolute RANGE within page)

INSTRUC When to Jump Other Actions

AJMP always

ACALL |always |PUSH address of next instruction onto stack so you
can return from this subroutine “Call” ((SP)) < (PC)
* instruction length

RE T always | POP address of next instruction off of stack so you

can return from subroutine with this instruction last in
it
(PC) < ((SP))

~ oy ?8@55?1% Iﬁ%f e@ons

o o
. e
i %ﬁw =

Long (to anywhere in space)

INSTRUC When to Jump Other Actions

LJMP always

LCALL |always |PUSH address of next instruction onto stack so you
can return from this subroutine “Call” ((SP)) < (PC)
* instruction length

RE T always | POP address of next instruction off of stack so you

can return from subroutine with this instruction last in
it
(PC) < ((SP))

Spemal Case

.
PR
TR
Sl TR i n
e e]
oL e S
w -
i S et 'y K L} &
- ' -'.\'-'.\.-'\-.\'

to access external memory space

INSTRUC When to Jump

Other Actions

JMP always

(PC) € (A) + (DPTR)
DPTR is a 16 bit pointer

Ground “EA” pin on chip to force all code fetches to
be from external memory (via port pins)

RET always

POP address of next instruction off of stack so you
can return from subroutine with this instruction in it

(PC) < ((SP))

~ oy ?8@55?1% Iﬁ%f i ns

Compare RANGE S

m “Relative-Range”
Only one byte for branch target formation
Limited jump range (-128 to 127)
If relocating code, watch page-boundaries

m “Short-Absolute” (Absolute within 2*11 = 2K page)
Only one byte needed to begin branch target formation
Better jump range (2K of options)
If relocating code, watch page-boundaries

m “Long-Absolute”
Two bytes needed for branch target formation
Best jump range (64K of options)

80251 Instructions

Session 3547

Focusing on the Blurry Distinction between Microprocessors and Microcontrollers

J. T. Wunderlich PhD
Elizabethtown College (present) and Purdue University (1999)

Abstract

This paper compares microprocessors and microcontrollers in the context of teaching a sophomore level course where
students have completed previous studies in digital circuits and programming Discussing the similarities between these
devices helps reinforce the understanding of the basic function of either device. Topics such as the "fetch-decode-execute” of
an instruction cycle, or the memory-mapping of I'O provide good examples of similarities. Discussing the differences helps
identify which device 1s most suitable for a given application. Topics such as mathematical computation capabilities or the
ability to contain all needed functionality on a single chip provide good examples of differences. It 1s also important to study
these devices in the context of historical trends since today's microcontrollers have evolved from past microprocessors. The
microcontroller of the future could look more like today's microprocessors -- with a wider data bus, enhanced mathematical
functionality, and numerous speed-up schemes. However. many of the unique features of microcontrollers are unlikely to be
found m future microprocessors -- the separate memory for instructions and data 1s one example; the on-chip I'O control
features such as analog-to-digital conversion and pulse-width-modulated outputs are other examples. The understanding of
microprocessors and microcontrollers can also be enhanced by considering the differences between how programmers and
engineers may view these devices. For example, a device could be selected for the programming power of the instruction-set,
or for the simplicity of the instruction-set and minimization of additional circuitry.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition

Copvright © 1999, American Society for Engineering Education

80251 Instructions

Figure 2, Example MC68000 microprocessor program using 16-bit arithmetic to do a 16-bit task: Decrement the 16-bits in
general-purpose data register DO until it reaches the 16-bit number in general-purpose data register D2.

OF # OF
LINE BYTES CYCLES
01 check: CMP.W D0, D2 : compare D0 and D2, set appropriate condition flag 2 4
02 DBE DO, check : decrement, and jump to " check " until DO and D2 equal 4 10 to 12
03 done: NOP : program finished 2 4
TOTAL= 8§

Figure 3. Example 8051 microcontroller program using 8-bit arithmetic to do a 16-bit task; Decrement the 8-bit general-
purpose registers R1 and RO as one concatenated 16-bit number until it reaches the 16-bit number made by concatenating the
contents of the 8-bit general-purpose registers R3 and R2.

#0OF #OF
LINE BYTES CYCLES
00 check: MOV A, RO :put low-order byte in accumulator 1 1
01 CJINE A, 02Zh, dermnt :conditional jump to "dcrmnt" if not equal to R2 contents 3 2
02 MOV A Rl :put high-order byte in accumulator 1 1
03 CJINE A, 03h, dermnt :conditional jump to " dermnt " if not equal to R3 contents 3 2
04 SIMP done :countdown finished, jump to "done" 2 2
05 dermnt: MOV A, RO :put low-order byte in accumulator 1 1
06 CLRC :must clear carry flag since used in subtraction 1 1
07 SUBB A, #01h :decrement (and possibly set borrow) 2 1
08 MOV RO .A :temporarily store new high-order byte in R0 1 1
09 MOV A, R1 :put high-order byte in accumulator 1 1
10 SUBB A, #00h :subtract borrow (i.e., carry bit is set if borrow at line #07) 2 1
11 MOVRI .A :temporarily store new high-order byte in R1 1 1
12 SIMP check :jump to "check " 2 2
13 done: NOP :program finished 1 1

TOTAL= 22

80251 Instructions

Figure 4. Example MC68000 microprocessor program using 16-bit arithmetic to do a 16-bit task; Decrement the 16-bits at
RAM location 2000h until it reaches the 16-bit number in general-purpose data register D2; then store count back into
memory |

OF # OF
LINE BYTES CYCLES
00 MOVE.W $2000, DO : copy original count into register DO from RAM (off-chip) 4 12
01 check: CMP.W D0, D2 : compare DO and D2, set appropriate condition flag 2 4
02 DBE D0, check ; decrement, and jump to " check " until DO and D2 equal 4 10 to 12
03 MOVE.W D0, $2000 ; write count to RAM (off-chip) from D0 4 12
04 done: NOP : program finished 2 4
TOTAL= 16

Figure 5. Example 8051 microcontroller programusing 8-bit arithmetic to do a 16-bit task; Decrement the 8-bit contents of
internal RAM addresses 21h and 20h as one concatenated 16-bit number until it reaches the 16-bit number made by
concatenating the contents of the 8-bit general-purpose registers R3 and R2 [2].

OF # OF
LINE BYTES CYCLES
00 check: MOV A, 20h :get low-order byte from on-chip RAM 2 1
01 CJINE A, 02h, dermnt :conditional jump to "dcrmnt" if not equal to R2 contents 3 2
02 MOV A, 21h :get high-order byte from on-chip RAM 2 1
03 CJNE A, 03h, dermnt :conditional jump to " dermnt " if not equal to R3 contents 3 2
04 SIMP done :countdown finished, jump to "done" 2 2
05 dermnt: MOV A, 20h :get low-order byte from on-chip RAM for decrementing 2 1
06 CLRC :must clear carry flag since it is used as a borrow 1 1
07 SUBB A, #01h :decrement (and possibly set borrow) 2 1
08 MOV 20h .A :store new high-order byte in on-chip RAM 2 1
09 MOV A, 21h :get high-order byte from on-chip RAM for decrementing 2 1
10 SUBB A, #00h :subtract borrow (i.e., carry bit is set if borrow at line #07) 2 1
11 MOV 21h .A :store new low-order byte in on-chip RAM 2 1
12 SIMP check :jump to "check " 2 2
13 done: NOP :program finished 1 1

TOTAL= 28

	80251 Microcontoller�Jumps and Calls 4/12/2019
	Recall Minimal Computer Architecture
	Recall Minimal Computer Architecture
	80251
	80251 Memory Map
	Addressing Modes vs. “Range” classifications
	Addressing Modes vs. Ranges
	Address RANGES �and Branch-target Address Formation
	Short (relative RANGE) �INSTRUC When to Jump Other Actions
	Page (Absolute RANGE within page) ���INSTRUC When to Jump Other Actions
	Long (to anywhere in space)��INSTRUC When to Jump Other Actions
	Special Case �to access external memory space��INSTRUC When to Jump Other Actions
	Compare RANGE’s
	Slide Number 14
	Slide Number 15
	Slide Number 16

