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Chain Rule

» (Chain rule) If f and g are functions such that g is differentiabie at ;
tigble at u = g(x) and F is a function such that F(x) = f(g(x)), rh;ﬂfu%m

d d d
e FAx) = ;f‘l'll} . Egl[x},

A simpler, but less accurate statement of this theorem is: If y = f(x) and u = g(x),
then

Example 2

Ify=u’nndu-x’—4x+3.ﬁndirfd.r.
—— —_— e

By the chain rule, dy _dy du

dx du dx
= 22z — 4)
=d(x* — 4x + 3)(x - 2).
iw.i,
. 1
F“‘d"”“”"’{;wh_nr

5 us make the substitution we x*+3x—35 Then y=u~"; and, by the

_ =32+
F -9
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Differentiate y =+/'x.
1 1
-i'j'r_‘-t-‘:ll'l.l ___x"ll"- e
! =3 2v/x
x+2
Differentiate y = .
TV
There are several possible methods. Two are illustrated.
_r- %zl ] r=:l.l‘l‘+ :I-i;_ll

ﬁ_

1
_].r" = - x- V3 _ p-32

2
_ 1 1
T
x—2
“

\

iifu 5 we have avoided the gflatively complicated

Oy —aad Ty INE |m|,~|| Py .1|_p._.-|-|h-. i
tim Enﬂtw? ECO ”'w-.“* Eim]ﬂihlmmn'

e S w
W‘ ir‘ "i
niﬂmtmr-i. (\ (:u’*""
(n - :h -1
x? V4 -

Hnm,h:rwritmlthnnmndpmhlunur-: ', we get
‘;fﬁ’(l‘m I y=—xtm -,

to do in your head.
' i simple or
inator is very P

=)

n'the numerator i$ a constant.



Recall that in Section 4.4 we considered the chain rule for differentiating a function
of a function. For y = f(u) and u = g(x), we had y = f(g(x)) and

{#_ﬂf.

dx dudx

This proved to be very useful, especially when deriving formulas for the derivatives
of transcendental functions. In this section we extend the chain rule to functions of
several variables. —

Theorem 21.2

Suppose z = f(x, y), and x(t) and y(t) are differentiable functions in an open
interval containing t. If d2/8x and 3z/0y are continuous in a neighborhood of
(x(e), ye)), then

dx
dt

E—l&-;

E--a—’-q +a_11
dt dx dy

If z=x*+y*, x=3sin1 and y = #, find dz/dr.

hmhﬁm:=ﬁnrmdy=r,wcmmthmhmﬁﬂyhl#
of &

dz .
o = Hsinrcost+ e*).

Of course, lhilir derivative could also be found by substituting first and then
differentiating.

2 x4yt
= gin? r + &¥;

dz ) a
% 28in rcos [+ 1e*,
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Theorem 21.2 is especially useful when we do not know what all of the functions are.
It can be extended in many ways. Perhaps the most obvious is the case in which zis a
function of three or more variables, each of which is a function of 1.

Theorem 21.3

If z=flx;, xs,...,%,) and x, = gft), i =12, ...,n andif all partial
derivatives of z are continuous and dx,/dt exist, i = 1,2,...,n then

é_ ¢ Y&
dt |-|ﬂr‘il"

A special case of Theorem 21.2 follows.

Theorem 21.4

If z2=flx,y) and y = g(x) ﬂf&dﬁﬂkﬁﬂymﬂmﬂlﬂﬁ
exists, then

e

If zemx?4xy+y' and y=sinx, find dzfdx. \/\
dz 5: dy

=" ay E-{lr+rj+{:+zr}mx.

Again, thuwmhﬁm-:nq;n:ﬂx.whmﬂdhfmw
mhumun:r-lhx&umddlmmmmm !

i — Sl

the die
function z = f(x, y), where x
The fact that y = g(x) puts an additional restriction upon x and y does not enter into
consideration when one is finding 2z/8x or dz/dy. This restriction is taken into account
when finding dz/dx.

Just as Theorem 21.2, in which z is a function of two variables, can be extended
to give Theorem 21.3, in which z is a function of n variables, it can also be extended
from the case in which x and y are functions of a singie variable r to the case in which
x and y are functions of m variables. Let us consider one special case here.

1)

dzfdx and . dzfdx is ﬂuu_-mmﬂ by



If z=fix,) x=Fuv, ad y=Glu v) and if 3/ox and 3z/0y are
continuous and 8x/du, éx/dv, 8y/du, and Jy/év exist, then_

\&: dz ax dzr oy

u 9x ou +ayﬂu

and o [
6:_1_3_:__3:+E:‘3y
v dx dv dy v
e
orog# 6T this theorem is analogous to the proof of Theorem 21.2.
MJ

Ve zmx?—y, xmu+p, and y=u-—u, ﬁﬁdﬂ:}hmﬂ =

E-JI-E-{-E"-I
B 8x fu Oy Pu
=2x-1=3p-1

-=2x = 3%,

b oz ox o &y

ép #x dpv By &
=2x-1=3*(—
= 2x 4 32,

A question that heig, a0 when to use a partial derivative and
whmmumordmwﬂmwuw?“l:unmp&rlmmormmﬂmm
functlmmquuuumulfunmmnfmmhhurmnuthnmﬁrmm

Theorem 21.5, z is a function of the two variables x and y. Thus we want the partial
derivatives

o0z oz
E; and E;Ia,
Apiu.hmhxmdymfpminmofﬂutwmﬁhhuﬂu. We again want partial
dx dx dy ay

# k] —

' ' '

Finally, if the x and y in z = f(x, y) are replaced by Flu, v) and G(u, v), we have z =
f(F(u, v), G(u, v)), which is still a function of two variables. Thus, we still want
partial derivatives,
dz az
E‘: and 5;-
The chain rule is useful in rate-of-change problems. Q@))
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Suppose the radius of a right circular cylinder is increasing at the rate of 2 in./min and the
height is decreasing at 4 inymin. At what rate is the volume changing at the moment when
the radius is 4 in. and the height is 10 in.?

V= wr'h. Since both r and h are functions of the time ¢ we use the chain
rule to differentiate.

dV &Vdr 8V dh

&t or dr | Bh dt

dr s dh
-1!!*34-'!'? r &

But drjdt =2, dhjdt= —4, r=4, and h = 10. Therefore

2 201002 + 7O~
= 96w in/min.
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E Method of Least Squares

Yy In@m are given n_points (pairs of numbers)
@ﬁ‘;ﬁ Ty ¥+ * o (e ¥,

— n~

and we want to determine a function f(x) such that f(x) = v S"- 1, -, n.
The type of function ifﬁienaﬁﬁﬁ. polynomuals, :xpun:i'lﬂ functions, sine
and cosine functions) may be suggested by the nature of the problem (the
underlying physical law, for instance), and in many cases mﬂiﬂ:
certain degree will opriate. ﬂ..-l--n- A

we require strict equality flx,) = y,, -« -, flx ) = ¥, and use poly-
nomials of sufﬁm:nuy high degree, we may Ipph" one of the methods dis-
cussed in Sec. 18.3 in connection with interpolation. However, in certain
situations this would not be the appropriate solution of the actual problem.
For instance, to the four points

pt.

(1) (=10, L000), (=0.1,1.099), (0.2,0.808), (1.0, 1.000)

there corresponds the Lagrange polynomial f(x) = x* — x + | (Fig. 432),
but if we graph the points, we see that they lie nearly on a straight line.
Hence if these values are obtained in an experiment and thus involve an
experimental error, and if the nature of the experiment suggests a linear
relation, we better fit a straight line through the points (Fig. 432). Such a
line may be useful for predicting values to be expected for other values of
x. In simple cases a straight line may be fitted by eye, but if the points are
scattered, this becomes unreliable and we better use a mathematical prin-
{ ciple. A widely used procedure of this type is the method of least squares

M by Gauss. In the present situation it may be formulated as follows.
,1-4'/”( (,  \Method of least squares) The straight line

y =l + My
should be fitted through the given points (xy, y,), - « - , (x, ¥,) 50 that the

AY




The point on the line with abscissa x. inate b + tr;, HEI:'I_EE is

distance from l,’.tl. ¥,) is J_'p_l -b- ht:i (cf. Fig. 433) and that sum of squares
is e e — —

o /qni{rj—bfhﬂ
ju1

————
e

4 depends on b andw A necessary condition for ¢ to be minimum s

-
-Edr o230, -b-mx) =0

2) b ot
AT T
Fat 2%

I
(where we sum over j from | to n). Writing each sum as three sums and
taking one of them to the right, we obtain the result

bn ""IE‘J =Efj
IFE*}"'!’ZI,;: 2 5y,

These equations are called the normal equations of our problem.

-1-..'1' IT“J'IJ’
Jn}—n-hjl!

¥ =g+ br
T

Jn-lrhj
—

xj

Hg.ﬂl.h’ﬂ'ﬁ::d{iﬂﬂ'ﬁadﬂmﬂ[q.ﬁ]
from q siraight line y = g + bx

EXAMPLE 1. Straight line
Uﬁngrh:m:hudﬂ{lu:lmru.ﬁumi;hhlmh:hnpﬁnugimifmul.

Solution. We obtain
n=4, Fx=0l, =5t =205, = ¥ = 3.907, Exj}:=ﬂ.ﬂi11

(3)

0k

Hence the normal equations are
Sa + 0106 = 39070

O.la + 2056 = 0.0517
The solution is a = 0.9773_ b = —ﬂﬂm,m“mmwﬂﬂﬁmiﬁ.lﬂi

v = 09773 — 002241 ' Q»))
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