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With nano-scale technology and Moore’s Law end, architecture advance serves as the princi-

pal means of achieving enhanced e�ciency and scalability into the exascale era. Ironically, the field

that has demonstrated the greatest leaps of technology in the history of humankind, has retained

its roots in its earliest strategy, the von Neumann architecture model which has imposed tradeo↵s

no longer valid for today’s semiconductor technologies, although they were suitable through the

1980s. Essentially all commercial computers, including HPC, have been and are von Neumann

derivatives. The bottlenecks imposed by this heritage are the emphasis on ALU/FPU utilization,

single instruction issue and sequential consistency, and the separation of memory and processing

logic (“von Neumann bottleneck”). Here the authors explore the possibility and implications of one

class of non von Neumann architecture based on cellular structures, asynchronous multi-tasking,

distributed shared memory, and message-driven computation. “Continuum Computer Architec-

ture” is introduced as a genus of ultra-fine-grained architectures where complexity of operation is

an emergent behavior of simplicity of design combined with highly replicated elements. An exem-

plar species of CCA, “Simultac” is considered comprising billions of simple elements, “fontons”,

of merged properties of data storage and movement combined with logical transformations. Em-

ploying the ParalleX execution model and a variation of the HPX+ runtime system software, the

Simultac may provide the path to cost e↵ective data analytics and machine learning as well as

dynamic adaptive simulations in the trans-exaOPS performance regime.

Keywords: High-Performance Computing, parallel processing, exascale, non-von Neumann ar-

chitecture, cellular architecture.

Introduction

Commercial computers have been predominantly von Neumann derivative architectures

throughout the seven decades of digital electronic information processing although the enabling

technologies and the logical structures have varied widely over this period. Such systems like

MPPs, SIMD, vector, ILP, and multithreaded, while representing their own distinct ways of

exploiting parallelism, have none the less been based on the fundamental principles of the von

Neumann model of the 1940s. These include sequential instruction issue and sequential consis-

tency, optimizing for ALU/FPU utilization as the precious resource, and separation of processing

and memory. At one time this was the rational objective function as an FPU in the enabling

technology of their respective times was the most expensive component in discrete components,

size, cost, and power; thus, driving its throughput as most important for performance to cost.

Even when this was less so, while Moore’s Law dominated, component capacity and performance

grew exponentially with time in conjunction with Dennard scaling [7] and ILP through incre-

mental extensions of conventional practices and architecture. Since 2005, processor core speeds

have not grown and overall system performance has been improved only through increased mul-

tiplicity of cores either through multicore/manycore architectures such as the Intel Xeon Phi

or the higher order core structures like the NVIDIA family of GPUs. This will likely deliver an

ExaFLOPS HPL R
max

performance after 2020 but at significant cost and low e�ciency. Fur-

ther emerging applications of importance in data analytics and machine learning among others

will demand very di↵erent design structures, balance, and programming methodologies. It is a
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premise of this paper that the future of high end computing exploiting CMOS nano-scale device

technologies will require new classes of computer architecture to take full advantage of compo-

nent capabilities through avoidance of many of the bottlenecks imposed by the von Neumann

architecture model. One example of active interest and research pursuit is neuro-morphic ar-

chitectures that are brain-inspired such as neural nets. The research discussed here, Continuum

Computer Architecture (CCA), is proposed to reverse the stagnation of von Neumann archi-

tecture and dramatically increase key properties of scalability and memory bandwidth while

dramatically reducing size, power, and cost. This paper establishes the fundamental principles

of the future class CCA systems.

CCA is motivated by the end of Moore’s Law at nanoscale semiconductor feature size and

the opportunity for new architectures that exploit rational optimization strategies of current

enabling technologies as opposed to conventional practices based on the legacy of the venerable

von Neumann architecture model. An examination of conventional core architectures based on

the three major contradictions imposed by the von Neumann model are the emphasis on FPU

utilization, the separation of processor and memory, and the limited way in which parallelism is

exposed and exploited due to sequential instruction issue. Much of the die area is dedicated to

emphasizing the FPU/ALU utilization including speculative execution, branch prediction, out of

order completion, and multiple cache layers and their control. The principal metric of operation

should be the time delay between when an operation is logically ready to be executed (that is

satisfies its precedent constraints) and when it is actually performed. Eliminating the von Neu-

mann bottleneck associated with the latency and bandwidth constraints for memory access has

been long recognized as an essential goal but current cache based techniques demand data reuse

through temporal and spatial locality. The typical practice of organizing parallel computation

through the BSP style [21] with global barriers imposes potentially severe bottlenecks in core

usage with irregular tasks. Furthermore, both user productivity and performance portability

are hampered by the myriad details of performance optimization resulting from the complexity

of contemporary core designs. Ultimately, future architectures across the exascale performance

regime will depend how they address the key fundamental operational factors of starvation,

latency, overhead, and contention at every level with e↵ective use of parallelism probably most

critical.

This paper departs from the norm by considering these key issues and examining an ar-

chitecture design space that falls into the broad family of non-von Neumann architectures

to eliminate the deleterious e↵ects of the legacy of von Neumann based machines. It further

presents a genus of innovative architectures, Continuum Computer Architectures, that borrows

from early consideration of a number of alternative strategies including cellular automata [14],

dataflow [8], systolic arrays [5], and more recent work on Asynchronous Multi-Task comput-

ing [10, 12, 15, 20, 23] as well as the authors’ own work on the ParalleX execution model [1, 11].

The paper concludes with an analysis that suggests that an exascale computer employing such

concepts could be devised and fabricated using contemporary CMOS semiconductor technology

and managed through current experimental dynamic adaptive software techniques in a relatively

cost e↵ective way compared to current projected approaches.

1. Continuum Computer Architecture

The architecture genus of Continuum Computer Architecture is first advanced as a

Gedanken-experiment with the following attributes: presume that a finite space (rectangular
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for convenience) is filled with many rows and columns of computers connected in a mesh topol-

ogy. Within the finite space, replace each computer with four machines, each of a quarter lower

performance, data storage, and foot print so that the same area has the same capability, just

realized through more and more smaller and smaller computing elements. Repeat this cycle in-

finitely. In the limit, every point in a finite space has the properties of logical operations, data

storage, and data movement but to a minimal, actually zero amount, in each case. But a finite

area, no matter how miniscule beyond a point will have non-zero values in all three parameters.

A medium of computing has been created, at least of the imagination a continuum computer.

Such continuum computers can actually be produced for special purposes in the analog domain

such as the determination of electrical fields in a conductive fluid; not exactly programmable in a

general purpose sense but it does prove the point. For a more general CCA, such a medium must

be discretized as is done with many algorithmic models such as Discrete Fourier Transforms [6]

or Finite Element Methods [2]. The challenge is to derive the smallest fine grain element that

embodies the properties of data storage, logic, and data transfer such that when employed in

collectives can accomplish real world (programmable) parallel computation. In the special case

of the species of CCA described in this paper, the element is referred to as a “fonton”, but this

is getting ahead of the story, to which we return in future sections. It is ironic that perhaps

the first example of this genus of non-von Neumann architectures was created by John von

Neumann himself in 1949 in the form of the cellular automata which he proved to be Turing

equivalent. Many special purpose cellular automata have been devised over ensuing years; the

most famous of which is most likely Conway’s Game of Life [3]. The technical strategy of the

CCA is summarized as comprising the following elements:

1. Non von Neumann Architecture – to eliminate the bottlenecks imposed by legacy structures.

2. Optimizing for most expensive property, not FPU utilization – emphasizing today’s crucial

bottlenecks such as memory bandwidth and latency rather than the obsolete notion of FPU

utilization.

3. Cellular Structures -- maximizing best usage of die area through cellular structures which

replaces complexity of design for complexity of operation with simplicity of design combined

with massive replication.

4. Nearest Neighbor Access – exploitation of nearest neighbor communication between cells

for extreme system bandwidth with minimum latency as appropriate.

5. Parallel Control Flow – the replacement of sequential issue based control flow with intrinsic

parallel control flow combining dataflow and futures semantics with a high level global

parallel control state.

6. Objective Function – parameter set for a multi-dimensional optimization space including

memory bandwidth and latency, delay between enabled and executed actions, sustained

OPS versus peak or Linpack FLOPS, and time to solution versus cost.

These strategy elements in concert establish the guidelines that govern the manifestation of

continuum computer architectures for ultra-scale computing.

2. Simultac Fonton

The Simultac architecture currently investigated by the authors is but one of possible species

of CCA. It stresses practical aspects of the design to promote cost-e↵ective and e�cient imple-

mentation while reducing the design time and enabling fast prototyping on FPGA technology.
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The primary guiding principle is simplicity; the complexity of its component cells is signifi-

cantly lower than that of a single RISC core. The desired performance level of the whole system

is achieved through high level of replication of uniform component cells (fontons). The emer-

gent properties of a large scale system manifest themselves due to synergies arising within the

multitude of concurrent actions performed by many fontons.

Simultac design directly addresses performance degradation factors identified by the

SLOWER model [16]. It supports hierarchy of parallel actions, ranging from dataflow-like inter-

actions inside cell groups to parallel process instances, each occupying a macroscopic fraction of

hardware resources. This limits starvation by identifying opportunities for parallelism extraction

at multiple levels of program execution. The latency e↵ects are suppressed by introduction of

new structures, both in software and hardware that enable opportunistic scheduling of work.

The overheads are minimized through development of optimized hardware mechanisms; due to

simplicity of the design, the analysis of costs and implementation of such improvements are not

di�cult to perform. The contention is addressed by providing abundant execution resources.

A critical element of reducing power consumption, proximity of data, is achieved through in-

tegration of storage and processing logic. Finally, component redundancy and high availability

“anywhere in the medium” provides fault tolerance.
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Figure 1. Internal structure of a fonton

A schematic diagram of fonton internals is shown in fig. 1. At the heart of the fonton is

an associative storage array in which memory segments with capacity comparable to that of a

cache line are combined with virtual tags to enable selection of the appropriate individual storage

cells. Contents of the array may be transformed by an ALU controlled by logic executing locally

stored strands of instructions. The (limited) code may be either kept in the memory array or

delivered by an incident token (active message) from the cross-chip interconnect. The token

destination address is matched by specialized logic monitoring all locally used tags. If a match is

obtained, including forms of wildcard addressing, the token is absorbed by a fonton. The fonton

has a dedicated adjacency interface permitting access and modification of the state of several

neighbor fontons. This interface also permits realization of simple but high aggregate bandwidth

massaging, alleviating the load of on-chip network if only intra-neighborhood communication is
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necessary. The majority of fonton operations are performed within a single clock cycle eliminating

elaborate pipelines and reducing the processing latency.

Figure 2. Some of the possible 2D tessellations

Scaling to chip size involves embedding a large number of fontons on a die. For this purpose,

die area has to be tessellated using uniform shapes to completely fill the available space. This

also determines the number of adjacent fontons involved in the nearest-neighbor interactions.

Some of the considered tessellations are illustrated in fig. 2. The resultant geometry directly

impacts the types of parallel processing that can be performed in local neighborhoods. They

range from simple 1D pipelines, forked pipelines, overlapping multi-directional pipelines, trees

and DAGs to arbitrary graphs. Determining the tradeo↵s between the required resource count

(such as number of links per cell with associated control logic) and the ability to emulate a

broad range of structures required to represent data and/or control flow relationships is one of

the subjects of the ongoing research.

3. Parallel Control Flow

Locality N Locality 1 

Process B 

Process C 

Process A 
. . . 

Thread 
Suspended Thread 
Local Memory Access 
GAS Address Lookup 
Local Action 
Parcel 

(a) local thread instantiation 
(b) remote thread instantiation 
(c) remote atomic memory operation 
(d) depleted thread activation 
(e) dataflow object trigger 
(f) future value access 

(a) 

(c) 

(d) 

(e) 

(e) 

(b) 

(f) 

Locality 
Process 
Local Memory 
LCO 

Figure 3. Semantic constructs of ParalleX enabling various types of parallel control flow

The CCA/Simultac architecture described thus far satisfies the need to define organization

of primitive components. But the von Neumann architecture also provides the semantics of

computing; the execution model that governs the logic of operations and the meaning of the
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objects on which they perform as well as the order in which they are performed. Continuum

Computer Architectures in general and the Simultac architectures in particular also require an

execution model to transform the local rules and state to global general purpose computation,

meeting the criteria of success required of this non von Neumann approach. The experimental

ParalleX execution model serves this purpose as an abstraction to define and guide the semantics

of computing implemented as a version of the HPX family of runtime systems [18, 19]. This also

provides a low-level application programming interface (API) or a target for high-level language

compilers. There are many aspects of the ParalleX execution model and its HPX embodiment

that distinguish it from the classical von Neumann model, but a few functional constructs create

the framework for the rest of the parallel operation. These include the following:

• Global name space – data, control, and program objects all exist in a single but hierarchical

name space that permits virtual objects to migrate across physical space without requiring

name change.

• Spanning processes – first class ephemeral contexts that include data, control state, task

instantiations, child processes, and resource mapping that span multiple physical work

units like conventional SMP nodes. They define the hierarchical name space.

• Compute complexes – the principal form of executing instantiated tasks that operate within

a defined locality (contiguous physical space of bounded response time and guaranteed

compound atomic sets of operations) that performs the work of the application.

• Parcel-driven computing – a form of active messages that move work to the data as opposed

to always moving data to the work to reduce latencies and their e↵ects while managing

asynchronous operation of distributed systems.

• Local control objects – small objects that contain and transform control state a graph of

which provides global parallelism control and continuations. Rich semantic constructs like

dataflow and futures (actor’s model [9]) provide a rich array of asynchronous control for

managing the progress of complexes and the creation of new ones.

The HPX runtime systems manage the overall resource management and task scheduling of

a ParalleX program anticipated for future CCA and Simultac application programs. HPX-5 is a

recent experimental runtime system embodying many of these policies on conventional parallel

computers for many applications in use today. Challenges in the area of overhead of runtime

control can be minimized by architectural features within the fontons. This represents future

research.

4. ExaOPS System Architecture

The proposed architecture may be implemented using the currently available CMOS tech-

nology (fig. 4). To lower the production costs, die sizes that result in best balance between the

e↵ective silicon area, yield, and ability to support the required number of I/O leads are selected,

typically in the vicinity of 100mm2. In many cases the yield may be improved further since

chips containing a few damaged fontons need not be discarded. The practical fonton counts are

expected to reach about 10,000 per die. The required packaging density may be achieved by

stacking dies on top of each other and connecting them using Through-Silicon Vias [4] to pro-

vide high local interconnect bandwidth while sacrificing relatively minor fraction of usable silicon

area. The bottom dies incorporate high-speed serial transceivers to enable communication be-
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tween di↵erent stacks on the same board. For longer distances, integrated silicon photonics [17]

may be deployed to allow the use of more e�cient fiber optics.

a) b) 

c) d) 
Figure 4. Simultac system architecture: a) single CMOS die, b) 3D die stack, c) board stack

with integrated cooling, and d) exascale machine

The board space is mainly consumed by few thousands of die stacks. The remainder is oc-

cupied by voltage regulators and other conventional circuitry such as clock and reset generators,

system monitors, etc. Relatively dense packaging will result in substantial heat dissipation thus

preventing the use of conventional forced-air cooling. To cope with that, heat sinks with inte-

grated cooling channels may be applied. This also permits the boards to be densely stacked as

illustrated in fig. 4c. Finally, the complete system incorporates a number (64 shown) of board

stacks arranged uniformly in three dimensions to minimize the length of cables connecting the

individual units.

To estimate the resources needed to implement a Simultac system of exascale capability, a

number of (rather conservative) assumptions have been made. To limit the power consumption,

the clock frequency has been reduced to 250MHz. The logic of a single fonton was estimated

at the generous 16,000 gates, excluding memory. 50% of die resources are used for storage,

while the logic and interconnect consume 40% and 10%, respectively. Each memory data cell

uses 12 transistors per bit due to multi-ported access supporting both local operation and

adjacency interfaces. The extra transistors may also be used in support circuits that improve

noise margins in storage cells and reduce the current leakage arising as an e↵ect of sub-1V

supply voltage [13, 22], thus providing additional power saving. The assumed resource budget

yields about 1KB of useful storage per fonton, accounting for address tags and synchronization

bits for individual words. The dies are stacked four-deep and the resulting stacks are spaced
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Figure 5. Comparison of one cubic meter Simultac implementation using four process tech-

nologies: a) overall performance and aggregate memory size and b) total fonton count and

power dissipation. The estimated power consumption for the last technology node could not be

calculated due to unavailability of reliable data

20mm center-to-center on the boards, leaving 10% of board area for supporting circuitry. With

boards mounted every 20mm in vertical dimension, the properties of a prototype fitting into

1m3 are plotted in fig. 5 assuming transistor densities represented by four recent processor

implementations: IBM POWER8, AMD APU for Xbox One, Intel Xeon Broadwell, and Apple

A10. The power figures were approximated by linear scaling of the published TDP values by clock

frequency and transistor count, hence do not take correctly into account static power dissipation

and possible additional savings due to reduction of supply voltage. Properties of a full-scale

system using arrangement of 4⇥ 4⇥ 4 cubes are contrasted in tab. 1 with the currently fastest

machine on the planet, TaihuLight. While Simultac compares favorably on nearly all metrics, it

has significantly worse storage capacity. This may be corrected by integrating additional DRAM

dies into 3D stacks and connecting them by TSVs to achieve high data throughput.

Table 1. Comparison of major system metrics for Simultac and TaihuLight

Parameter Simultac TaihuLight

Clock speed 250MHz 1.45GHz

Processing unit count 303.6 billion fontons 83.9 million FPUs

Peak performance 76ExaOPS 125PetaFLOPS

Total memory 345TB 1.28PB

Aggregate memory bandwidth 1821EB/s 5.46EB/s

Memory size to performance ratio 0.0000044 bytes/OPS 0.01 bytes/FLOPS

Memory bandwidth to performance ratio 24 bytes/OP 0.044 bytes/FLOP

Physical footprint 25m2 605m2

Conclusions

This paper has described a genus of computer architectures referred to here as the “Con-

tinuum Computer Architecture” and a particular specific instance, the “Simultac”, intended

to deliver superior performance to cost in the trans-exaOPS performance regime. It has taken
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a distinctly di↵erent direction from typical incremental changes to conventional practice most

frequently pursued. In particular, CCA is a genus of architectures that are non von Neumann

in form and function for the purpose of eliminating the legacy artifacts of prior art that impose

potentially severe bottlenecks. These include sequential instruction issue, separation of process-

ing logic and memory often referred to as the von Neumann bottleneck, and the emphasis on

FPU utilization for which much of the remaining architecture is dedicated. With the end of

Moore’s Law at nanoscale feature size, the development of revolutionary architectures suggests

the most promising approach to dramatic improvements to e�ciency and scalability. This paper

has discussed at length the strategy of the CCA and has analyzed to first order the potential

peak capability of the Simultac with respect to foot print and volume.

There are many design decisions yet to be determined for the Simultac class of cellular

structures. Perhaps most significant is the granularity of the fonton components. How large and

what is the form factor of the fonton storage? What are the logical functions that are directly

implemented in hardware of the fonton both to perform the application operations and to elim-

inate sources of overhead for resource management and task scheduling? One parameter to be

determined is the clock rate which needs to be slow enough to permit single cycle operation

of the fonton but fast enough to maximize the sustained performance of the Simultac. The

communication protocol has yet to be devised that can e�ciently represent the Parcel semantics

while minimizing latency and power. Managing the global name space and converting the virtual

address space distribution to physical routing algorithms requires refinement with emphasis on

race conditions due to asynchrony in the presence of migrating objects including continuations.

An exciting opportunity for academic research in architecture is the design of the fonton. Con-

ventional processor architectures are outside the scope of small teams of researchers. But this

particular class of architecture, that is the CCA genus, yields itself to small groups of develop-

ers. Prototyping with FPGAs is entirely feasible that can lead to very small chips for proof of

concept in semiconductor technology. The HPX runtime system software has been developed in

multiple versions and is su�ciently mature to anticipate its use in this context. But changes to

the low-level backend interface will have to be produced to work with the metal. This is a very

exciting time in computer architecture beyond an exascale and at the end of Moore’s Law. No

longer should research be constrained by incrementalism of conventional practices. The need is

too great to reconsider the opportunities of the non von Neumann family of architectures. An

exaOPS in a cubic meter is an extraordinary goal, but realistic in its execution.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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