VIRTUAL ADDRESSES --> PHYSICAL ADDRESSES

Before we start a discussion of virtual memory
and virtual addressing, let’s first review the
machine instructions cycle and the machine

pipeline to recall our understanding of
communication between the CPU and Main
Memory (RAM)



Typical
Machine-Instruction Cycle
for PIPELINE

Dr. Joseph Wunderlich

)



Phase 1: “"FETCH"

CPU puts address of the “next” machine
instruction onto the Address bus

CPU sends "READ" signal to memory
(cache’s first, then main memory)
Instruction read into CPU via data bus from
first memory where it is found (i.e., L1
cache, or L2 cache, or main memory)

If it is not located in any of them, this is a
“Page Fault” and a new page must be put
into main memory from disk storage



Phase 2: "DECODE"

CPU decodes instruction put into it's
Instruction Register during the “"FETCH

Machine Instructions have two main parts:
1. OP-Code: Identifies which instruction to
execute
2. Operand: Data to be used during
execution



Phase 2: "DECODE" continued

Typical Instruction Format:

< 8 to 32 bits >

5 to 11 bits in OP-Code
Therefore 2°5=32 to 2°11=2048 different
machine instructions in “Instruction Set”

eSome simple Microcontrollers (e.g., PIC’s) have only 32

instructions
eSome large-scale machines (e.g., IBM S/390) have close
to 2000 instructions




Phase 2: "DECODE" continued

Location of operand:

1. “IMMEDIATE:” Data encoded into machine
instruction (Fastest to execute)

2. “MEMORY-REFERENCED:” Data located in
memory at a location defined by address
encoded into machine instruction (Slowest to
execute)

3. “REGISTER-REFERENCED:” Data is located in an
internal CPU register and it’s register number is
encoded into machine instruction



Phase 3: "EXECUTE"

If necessary, read operand data from cache’s or

main memory:

1. CPU puts address of operand onto address bus

2. CPU exerts a "READ" signal

3. Data read into CPU via data bus from first memory
where it is found (i.e., L1 cache, or L2 cache, or
main memory)

4. If itis not located in any of them, this is a “"Page
Fault” and a new page must be put into main
memory from disk storage

Many different types of data manipulations are
carried out depending on the type of
instruction (e.g., ADD, SUBTACT, MULTIPLY,

MOVE, JUMP, etc.)



Phase 4: "WRITE-BACK"

This phase is only necessary for memory referenced
instructions which write results back to memory:

1.

2.
3.
4

CPU puts address onto address bus of
where data is to be written to

CPU puts Data onto data bus

CPU exerts a “"WRITE" signal

Data written into memory



VIRTUAL ADDRESSES --> PHYSICAL ADDRESSES

The CPU, operating system, and all application programs use a 64-bit address
space (VIRTUAL addressing); but 2764 is ~16,000,000,000 GigaBytes (i.e., 2”4
x 2730 x 2730) of memory which is much more than the Physical Memory of
most computers. For example the motherboard of most PCs, and the number
of address pins coming out of the processor is typically only 40 which
corresponds to 2240 = 1 TeraByte (i.e., 210 x 2230 = 1000 GigaBytes)

CPU
registers _ LT
MMU Physical
Addresses
ALU <_>

Control Unit /

/

VIRTUALAddresses

Before memory addresses are loaded on to the system bus, they are translated to physical
addresses by the MMU.

When the CPU wants to read or write from MAIN MEMORY (RAM), it
creates a 64-bit VIRTUAL ADDRESS that needs to be translated into a
PHYSICAL ADDRESS in the MEMORY MANGEMENT UNIT (MMU). The
location of this address is then first looked for in the caches located
between the CPU and Memory and if there is a cache miss of all those
caches’, then Memory is searched; however if it is not there, this is called
a PAGE FAULT and a page of data & instructions is copied (by the MMU)
from a storage device (DISK or FLASH HARDDRIVE) into memory. L 12))



Virtual space ‘ Virtual space
of processor 1 frames of processor 2
shared

(pages) memory

(a)PﬂvmvinudmunaymhdiMw

Virtual space
Physical Memory

P1
space

Shared

space
P2
space

(b) Globally shared virtual memory space

Figure 4.20 Two virtual memory models for multiprocessor systems. (Courtesy o
Dubois and Briggs, tutorial, Annual Symposium on Computer Architecture, 1990

‘Ihnslationmpcmnoredinthecache,inluodaﬁvemay.minthemﬁn
memory. Tbmthmmpc,amppingfmctimisappliedtothcvmw:ddm
Thhfuncﬁongmuﬁuapdnmwthedesiredtnndaﬁmmap.mmmbe
implemented with a hashing or congruence function.

Huhingisaﬁmplewmputuhchniqneformﬁngahngmmbcinw
a short one with fewer bits. Thehuhmgfunoﬁonshonldrudomthemtmlpm
numbermdpmdnceannjqnehuhednnmbawbemeduthepointa.mmgmm
function provides hashing into a linked list. Q )

)



[_Page | Bock | Wom | Physical acdress
(b)UseolaTLBandP‘l‘lforldd:utrmnlaion

4 28
0 [s]k ) Ofiset | Physical address
1 Select
15 oy
Segment Fegemers D | Ofiser ] Vitual address
28
(c)lnmtodaddmmppmg

lookaside buffer (TLB) and page tables (PTs). Basedontheprindpleoflocalityin
memoryrdamms,aparﬁculuworﬁngsddpquisrdaencedwithinagivmwmm



VA PA Captions
B Cache VA = Virnsal address
crPu T —
lorD A 1 = lnstructions
D = Data stream

(a) A unified cache accessed by physical address

e First —”—-m —-
e level | o | level
D-Cache D-Cache
TVA D Main
M -
cPU I 1-Cache .
0 - —

(b) Split caches accessed by physical address in the Silicon Graphics workstation

Pi;uns.ll’hy-icdaddmnodohiorunmodnndcpmm

Example 5.2 Cache design in a Silicon Graphics workstation

Pim&.&bdunonﬂn&uthesplitcachddgnudngtbohﬂPSWCPUln
the Silicon Graphics 4-D Series workstation. Both data cache and instruction cache
mnmmodwithaphydedaddruiuuodﬁmthoon—chipMMU.Am-hvddau
cache is implemented in this design.

The first level uses 64 Kbytes of WT D-cache. The second level uses 256 Kbytes
of WB D-cache. The single-level I-cache is 64 Kbytes. By the inclusion property,
the first-level cache is always a subset of the second-level cache. Most manufacturers
pnttheﬁnt-lwelachuondnpmmchipmdlunthemd-lwdachu
as options on the processor board. Hardware consistency needs to be enforced
between the two cache levels.

Thamjoradmtagesoiphyﬁaladdmadmindndenomdhpahmcwhe
ﬂmﬁu.maﬁaﬁupmﬂm;ndmmmcmbnpintheosw The short-
mummmmwmmﬂmmmmm
the address. This motivates the use of a virtual address cache. Integration of the MMU
and caches on the same VLSI chip can alleviate some of these problems.

Most conventional system designs use a physical address cache because of its sim-
plidtyandbmmaitrequiruﬁttleintumﬁonﬁomthcoswnel. When physical
addrusnchesmnndinaUND(mvirmmt,mﬂmhingdd&achahmodedif
buswuchinghprovidedwmmiwrthesystmbmmeMAnqmﬁnmI/Odeﬁm
or from other CPUs. Otherwise, the cache must be flushed for every I/O without proper
bus watching.

)



Watch this video:
https://www.youtube.com/watch?v=qlH4-oHnBb8

12

Virtual memory is a layer of indirection

“Any problem in computer science can be solved by adding indirection.”
Virtual memory takes program addresses and maps them to RAM addresses

Without Virtual Memory With Virtual Memory
Program Address = RAM Address Program Address Maps to RAM Address
32-bit program 30-bit RAM 32-bit program 30-bit RAM
address space (4GB) address space (1GB) address space (4GB) address space (1GB)

No VM: Crash if we
try to access more
RAM than we have

VM: mapping gives us
flexibility in how we use

/= the RAM

Virtual Memory: 3 What is Virtual Memory?

390,439 views * Jul 14,2014 s 42k 8 62 & SHARE =4 SAVE

David Black-Schaffer
0 13.2K subscribers SUBSCRIBE

)


https://www.youtube.com/watch?v=qlH4-oHnBb8

VIRTUAL ADDRESSES --> PHYSICAL ADDRESSES

Watch this Video:
https://www.youtube.com/watch?v=59rEMnKWoS4

22

Making VM work: translation

How does a program access memory?

1. Program executes a load specifying a virtual address (VA)
2. Computer translates the address to the physical address (PA) in memory
3. (If the physical address (PA) is not in memory, the operating system loads it in from disk)
4. The computer then reads the RAM using the physical address (PA) and returns the data to the
program
Program Translation RAM

Physical Address space

Virtual Address space from VA= PA

Processor

1d R3,. 1024(RO)

/=9

Virtual Memory: 4 How Does Virtual Memory Work?

203,098 views + Jul 14,2014 i 1.7 8 21 #~ SHARE =} SAVE

David Black-Schaffer
e 13.2K subscribers SUBSCRIBE

%

QA

N\
)

A\
’)


https://www.youtube.com/watch?v=59rEMnKWoS4

VIRTUAL ADDRESSES --> PHYSICAL ADDRESSES

Watch this Video:
https://www.youtube.com/watch?v=6neHHkI0Z00o

40

How to do a page table lookup

Virtual page number Page offset
Virtual Address 20 bits 12 bits

‘ 4kB page = 12 bits for
DISK page offset.
0x0003 Same for VA and PA.
0x0004 (No translation)

0x0006

Page Table

Page Table Entry

(PTE) tells us ox00f6

which page

Physical Address

Physical page number Page offset

€ /=9

Virtual Memory: 7 Address Translation Example Walkthrough

134,201 views * Jul 14,2014 |. 1K QI 15 A SHARE =} SAVE

David Black-Schaffer
0 13.2K subscribers SUBSCRIBE

)


https://www.youtube.com/watch?v=6neHHkI0Z0o

