Computer Performance
JT Wunderlich PhD

RISC (Reduced Instruction Set Computing)
vs CISC (Complex Instruction Set Computing)

Time (T) to execute a Machine Instruction

Ahmdahl’s Law for SPEEDUP
 Overcoming Ahmdal’s Law

Mathematical Models of Speedup

Common Benchmarks

1. RISC (Reduced Instruction Set Computing)
vs CISC (Complex Instruction Set Computing)

Review from Introductory course (just this page from Hennesey Comp Arch text)

2.20-4 2.20 Historical Perspective and Further Reading
High-Level-Language Computer Architectures
CISC In the 1960s, systems software was rarely written in high-level languages. For example,
virtually every commercial operating system before UNIX was programmed in
Com p|ex assembly language, and more recently even OS/2 was originally programmed at that
. same low level. Some people blamed the code density of the instruction sets, rather
Instruction than the programming languages and the compiler technology.
Hence, a architecture design philosophy called high-level-language computer
Set architecture was advocated, with the goal of making the hardware more like the
. programming languages. More efficient programming languages and compilers,
Computlng plus expanding memory, doomed this movement to a historical footnote. The
Burroughs B5000 was the commercial fountainhead of this philosophy, but today
there is no significant commercial descendent of this 1960sradical.
Reduced Instruction Set Computer Architectures
RISC This language-oriented design philosophy was replaced in the 1980s by RISC
Red UCEd (reduced instruction set computer). Improvements in programming languages, com-
piler technology, and memory cost meant that less programming was being done
Instruction at the assembly level, so instruction sets could be measured by how well compilers
used them, as opposed to how well assembly language programmers usedthem.
Set Virtually all new instruction sets since 1982 have followed this RISC philosophy
C ti of fixed instruction lengths, load-store instruction sets, limited addressing modes,
Ompu mg and limited operations. ARM, Hitachi SH, IBM PowerPC, MIPS, and Sun SPARC

are all examples of RISC architectures.

A Brief History of the ARM

ARM started as the processor for the Acorn computer, hence its original name of
Acorn RISC Machine. Its architecture was influenced by the Berkeley RISC
papers.

One of the most important early applications was emulation of the AM 6502, a
16-bit microprocessor. This emulation was to provide most of the software for
the Acorn computer. As the 6502 had a variable length instruction set that was a
multiple of bytes, 6502 emulation helps explain the emphasis on shifting and
masking in the ARM instruction set.

Its popularity as a low-power embedded computer began with its selection as
the processor for the ill-fated Apple Newton personal digital assistant. Although
the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility to . _
ARM, and it subsequently caught on in several markets, including cell phones. - :
Unlike the Newton experience, the extraordinary success of cell phones explai
why three billion ARM processors were shipped in 2008. h

,1:{.« 6 LINOMA WILT I T4 \ \g\{((‘/o Hardwred
Cantrst ovuaton (;| pm
Un Can Py I/\~¢qgn£€(.‘ ol et [+~ Dot Pach
1 ot v :
} y L':(.((l) », t t ‘f";",p- .
umanmi P s '| neructon Dan Chebe -)43".;))
j i
Man Memory A
(a) The CISC architecture with micropro- (b) The RISC architecture with
grammed costrol budwired costrol aod 4 f» |
. struction cache and dala cache,
Figure 3.4 Distinctions between RISD J processor architectures. / g '
Table 3.3 Charsctaristios of CISC sad[RISC Architacturm ‘ ' '
Archltectural | Complex Instrucilon leduc , .
Characteristic Computer (CISC) puter (NISC) , 5
‘ so-set muse | set of 120-350 1natructions of 30
and with variable formats (16~04 bits | witk fixed (33-bit) format and :
instraction formats | per instruction) c
A%w 12-24 \ !
purpose 24 ' w)
registers and cache Lﬁnmum -,u.ud.uudnu«t
1 deign ! | instruction caci~—
& =33 41TTs o001 CPl J1,30-60 M i LIk cng | A
Control Most ms uung """ wifhout enetre "
‘ memory (ROM) "":";L” memory ¢ L. =]
5 —Mt«mwz Pr.uGs) 1€ & Rores. Coofz b TR \RGTIE T -t ? \MW’
VL, ot SorAQ G f INSTvs © Q’Q F.w «
c 0\1? a‘tﬂv IS TRrATIING I]f\gi‘fr(cs“ .l’(r .
oW 'A\‘MMD (rw'(CONTELT Gl L5 1T v e
& -—E°"‘ﬂ H\!NCQ'Q Fort rotnfPue’ 2o /TRl ERGT ; E
aiat e e cemaivny, “ N GTEAIE 0 (el P AT A AP i i
L .‘f\\\. r\“’.\h ac; £ QGA O?’ NXTEY & r,\(}\(,_/r')c i ’
vsc U '.FA :'r’(i ’
n- Tt o € CE\P AR oW \RL Loyt (R vy
5""“’(.(‘« - 40‘2 oyl A= ..1
mmn G Corige (WL 1H S 5}“ W EOEq QAN L, @ | we
TASICIL Cronaprminty al ; -~H° Fk‘"— " PTNLL LA (A
vum;»s'rv Si 7Y ey |~ = =HNELP] L-
“Qhrle ’hormm ad _’—_ﬂcsu.pcww = (E:] ; "4{’{5‘ -
e pee yaq, o .
= '\achL\ -%‘- e 8,4 Lo @ A
(4 - ome STR LG
2 OC C ¢pmT

2. Time (T) to execute a Machine Instruction

Wunderlich, J.T. (1999). Focusing on the blurry distinction between microprocessors and
microcontrollers. In Proceedings of 1999 ASEE AnnualConference & Exposition, Charlotte,
NC: (session 3547), [CD-ROM]. ASEE Publications.

Session 3547

Focusing on the Blurry Distinction between Microprocessors and Microcontrollers

J. T. Wunderlich
Elizabethtown College and Purdue University

Abstract

This paper compares microprocessors and microcontrollers in the context of teaching a sophomore level course
where students have completed previous studies in digital circuits and programming. Discussing the similarities
between these devices helps reinforce the understanding of the basic function of either device. Topics such as the
"fetch-decode-execute" of an instruction cycle, or the memory-mapping of I/O provide good examples of
similarities. Discussing the differences helps identify which device is most suitable for a given application. Topics
such as mathematical computation capabilities or the ability to contain all needed functionality on a single chip
provide good examples of differences. It is also important to study these devices in the context of historical trends
since today's microcontrollers have evolved from past microprocessors. The microcontroller of the future could
look more like today's microprocessors -- with a wider data bus, enhanced mathematical functionality, and
numerous speed-up schemes. However, many of the unique features of microcontrollers are unlikely to be found in
future microprocessors -- the separate memory for instructions and data is one example; the on-chip I/O control
features such as analog-to-digital conversion and pulse-width-modulated outputs are other examples. The
understanding of microprocessors and microcontrollers can also be enhanced by considering the differences
between how programmers and engineers may view these devices. For example, a device could be selected for the
programming power of the instruction-set, or for the simplicity of the instruction-set and minimization of
additional circuitry.

I. Introduction

Teaching any subject in a historical context helps identify possible trends and focuses on fundamental
principles that do not change over time. Although electronic computing began in the 1940's, the first CPU (central
processing unit) packaged onto a single IC (integrated chip) was not available until 1971; it was the Intel 4004 4-
bit microprocessor [1], [2]. From this simple beginning, many different microprocessor and microcontroller
architectures have been developed. Today's typical Intel Pentium-based personal computer running Windows (i.e.,
"Wintel" machine) evolved from the Intel 4004 via the 8008, 8080, 8085, 286, 386, and 486 microprocessors.
Similar advances by other companies led to families of microprocessors built around completely different
instruction sets (e.g., Motorola 680xx family, Sparc family, etc.). The microprocessor typically studied in
undergraduate courses is either an Intel or Motorola device. This is also true for microcontrollers (with the Intel
8051 and Motorola 68HCI11 families [1], [3]); however, there are also some very simple 8-bit microcontrollers
from other manufacturers that are gaining popularity -- with as few as 32 instructions and programmable with a
personal computer [4]. Analyzing the simplest devices can help identify the basic features needed to make any
microcontroller or microprocessor useful. Conversely, the study of high-end computer architectures can help
identify the "cutting-edge" features needed to sustain the ever-increasing demand for more processing power in
both microprocessors and microcontrollers.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition ~

Copyright © 1999, American Society for Engineering Education

http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_ASEEPAPetown2.pdf

I1. Microprocessor and Microcontroller Similarities

Discussing the similarities between microcontrollers and microprocessors helps reinforce the understanding of
the basic function of either device. A good way to visualize this is by approximating a "minimal-computer-
architecture" common to both devices (see Fig. 1). This figure does not make a distinction between internal (on-
chip) and external (off-chip) buses or memory, code space vs. data space, etc. -- but does attempt to get across the
basic idea of how these devices function.

DATARBUS
|
+ 1 17 1 T 1T 7
Instruction
5
Register V 7]l Input
| Arithmetic Registers Stack Memaory and
Control Logic Unit data Output
Logic —p

data
address

I Status Register |

mstmetion T ADDRESS BUS

Figure 1. A "minimal-computer-architecture".

’—l} Program Counter |
i

ncrement

As shown in Fig. 1, each device contains:
- A program counter to address instructions to be fetched from memory.
- An instruction register to put the fetched instruction in.
- Control logic to create all routing signals after decoding the fetched instruction.
- An ALU for arithmetic and logical manipulation of data and addresses.
- Registers for storing intermediate results of calculations.
- A status register for status flags and condition codes.
= Memory for storing data and instructions.
- A stack for storing addresses (or processor status) for returning from program-calls (or interrupts).
= I/O which is addressed as memory (i.e., memory-mapped 1/0).

Although the number of stages in an instruction cycle is device-dependent and can vary significantly, the fetch,
decode, and execute stages are common to most microcontrollers and microprocessors. Whether instruction code is
stored in internal (on-chip) or external (off-chip) ROM or RAM, it must be fetched via a data bus after being
pointed to by a program counter which puts a memory address on an address bus. Both devices have instructions
identified by op-codes which must be decoded during a decode phase; and each device has at least one execution
phase where most control-actions are carried out. Additionally, both devices typically have a write-back phase for
instructions that store ALU results into memory.

III. Microprocessor and Microcontroller Differences

Discussing the differences between microcontrollers and microprocessors helps identify which device is more
suitable for a given application. A good way to examine differences is by working from the same "minimal-
computer-architecture" shown above. One major difference is in how instructions and data are stored in memory,
and where the memory is physically located. For typical microprocessors, all memory is located off-chip (with the
exception of some caches) - with a ROM used to permanently store instructions such as a bootstrap program to
start-up the system, and RAM used to store data and all other instructions (i.e., "Von Neumann" architecture). For
many microcontrollers, there is ROM and RAM on the chip, address-space for additional ROM and RAM off-
chip, and registers and a stack that can be addressed as internal RAM. Also, instructions and data are stored
separately (i.e., "Harvard" architecture); the ROM is used to contain all instructions upon completion of code
development, and the RAM is used to store data. However, during code development the RAM can be used to store

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
Copyright © 1999, American Society for Engineering Education

both code and data. This architecture is well suited for embedded applications where the code is fixed (i.e., burned
into ROM). Having on-chip RAM also helps allow the microcontroller to be embedded as a single-chip computer.

In microprocessors, on-chip and off-chip caches (and often separate caches for data and instructions) are used
to speed-up processing. These memories are made from fast static-RAM (i.e., faster, but more expensive and with
less transistor-density than dynamic-RAM), and contain most-recently-used data and instructions (which are
statistically more likely to be needed).

Both microcontrollers and microprocessors have a program counter to address instructions to be fetched from
memory. However, the calculation of instruction addresses can be significantly more complex in microprocessors;
with the target-addresses of branch instructions being prefetched using branch-prediction strategies; and with
several levels of address translation required to get real RAM addresses from virtual addresses when the address
space is not directly mapped to the actual available RAM.

Both devices have an instruction register to receive fetched instructions, and circuitry to decode instruction op-
codes, however the control logic to create all routing signals is more complex for microprocessors which have more
powerful instruction sets -- with fancier addressing modes and many instructions. The only exception to this is
RISC microprocessors (i.e., Reduced Instruction-Set Computer) where intentionally simple instruction-sets and
addressing modes are developed as part of the overall speed-up scheme for the processor [5]. Although
microcontrollers have simple instruction-sets, they do not typically have other features needed to classify them as
RISC devices (e.g., fixed instruction-length formats). They do however have on-chip RAM and several general-
purpose register banks which allow faster access of data than off-chip memory-accesses -- and this has the same
effect as the large register-sets found on RISC chips. Both devices have a stack for storing addresses (or processor
status) for returning from program-calls (or interrupts), however microprocessors often have two stacks: a general-
purpose user-stack, and a system-stack that requires privileged instructions to access [6].

The evolution of microprocsssors (as weil as more complex high-performance machines) has led to many
advances in computer architecrnure to speed-up precessing; this has included much more than increasing processor

clock speed. The time to execute a program can be rzoreseated by: CPE = P 3 (m H)
__ PHENE Q= Hof CYLLEs Fon
ﬂ—-‘_}— T=CPI*(I;)=4 " P Tl L OCd -
v v C el

> H ofF

. = , . : MM

a given code segment, and CPI (cycles per instruction) is the average time to fetch, decode, execute, and store i LLRAYES
results for each instruction [5]. There are many strategies to decrease CPI; for example, processing several PEL 3T
instructions simultaneously (i.e., superscalar), or moving data directly between 1/O and memory (i.e., Direct '
Memory Access). Hardware to anticipate and take "pre-actions" has been a design concept for many years. This not

only includes prefetching data and instructions in caches, but also prefetching branch-target addresses using 'Q’

Branch History Tables, or caching virtual address translations using Translation Lookaside Buffers. Other speed-

up techniques include re-ordering and optimizing instruction streams as they come into the CPU (i.e., out-of-order Memory Access

whcrcf is the clock period in seconds per cycle (i.e., lifrequency), I. is the number of machine instructions in w

execution), or overlapping the individual instruction-cycle phases of many instructions (i.e., super-pipeline = Cycle Time
Many of these advances will eventually work their way into microcontroller architectures, however features T’”P[UC
designed to handle large address spaces are less likely to be needed for microcontroller applications. PEcob L

Although both devices have an ALU for integer zrithmeric and logical manipulation of data. microprocessors are !
much berter suited for "number-crunching”. and usually have a wider data bus and /arger general-purpose registers E/“""L'““
to accommodate this. Microcontoilers are rypicaily limited to 8-bit or 16-bit number represeatations (even though T W
32-bit microconmollers are avaiiabie); whersas m:croprocessors usually allow 32-bit representations, and contain
additional floating-point hardware to allow arithrme=c using much larger number ranges (and therefore much greater /
precision). Table 1 shows the avaiiabie nummber range for differeat integer number representations.

Le s i\:wer "

ant\ MA
Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition (‘d\l‘g«)’ T E

Copyright © 1999, American Society for Engineering Education

P e B , ¢ %

—~—A _."1‘ '(‘ L "Q/’f A%k
. '
JY e < _____Table 1, Number range for different integer number representanions.
\E 1 T et vnngned: 0 W@ = 0 w285
6 o _f S sigpes: e @D | - a8 w127
|51 [1£ 1600t uanigned: 0 L@ | = 0w esss
Y e 'f" > | 163 ugned: @2 @O |+ 2768w 12767
D’ ‘“1 3250t unsigned: 0 W@ | = 0 10 429496729
il ¢ 32-5it signed: Q*IV2 © (@AM | = IATADHE 1 114780647
Jl‘ ..(-7 RO—— o wawi |
o R n-du signed: @2 o (@2l
(- \(k\ ‘ S —

e mwsmumwmw«mmmmwmm

——

dmmqwmmmmm uMhF@‘tZudJ.muﬁvhm
mmummwummlmmmhmmmmm
arithmesic. Evea if the 8051 microcontroller programming effort in Fig. 3 was avoided by programming in a high-
wmp(cgqummmmmmﬂmmymmun

16-bit registers where available (ie., 22 vs. 8 for these examples). The limited $051 inswuction-set also conwibutes

to the many lines of code needed in Fig. 3; the accumulator must be used to receive all results from the ALU,

therefore knqwmuunwdnndmdmm(u at lines #8 and #11); whereas

. .WWmMMWmmmmd

Q.1 »W»uu-mmmuu(mucm«a-mzm. Although large program size
'.';.’-0‘-,-'-\|wmnuyamblanhw:ymnmhamhnhmwmm

o)

' L\ limited space for code (i.e., in ROM) — Mum«umkum-um

. SESSS, PV &P ofiul pie WOE Matlires Badna ’,fGV\ VE wEweva? ‘owc\n.
e L Figure 2. Example MC63000 microprocessor program using 16-bit obulm&mulm- cwy
WW&ulmmhmﬁmbl on
e 7 \.)-,‘\ 1S \ " (L M _h:‘ ':.s« P v #OF =0OF ““"tu
T B e - - BYTES CYCLES MRS s
- 110 » ol check: cw.wﬁ_m ;mmdummwh 2 4
o DBE DO, check ; decrerment, and jump 10 * check * ypnl DO and D2 equal & 0wi2
(3] done: VOL . program finished 2 s
i N ‘,l:"-‘a.f '_'\":.,:'Y —
TOTAL=- 3
[.\Mﬂ W Foeus of BhelisSD3 0:-0 Il')!- PL4GIar
Figure J. Example lemmMnb a 16-bit task: Decrement the pml-'x.m.v}
pusrpose registers, m:wmmumulmmm’ym g
mo(hMWWUdI— AL o \r = o) "';a‘ —\.\o; FATEL f“ l(- tlﬂ l‘{ﬂ "
A e b - W \ BYTES CycLes o
o :T\ -] check: nOV’A.M put low-order 3yie in accumulator ! |
AT ol cwxmmwm-wn-“-l.m 3 2 =~
O 0 MOV A.RI Put Righ-oroer Dyie 1n sccurmuiaior 1 I .
03 A C'\'l.\.mmw”. dermant * if not equal 10 R comtens 3 &
o4 S SiMPdone ¢ “icounsdown finished. jump to "done” 2 g ¥\
A 05 deme MOVA.IO‘\‘ (Put low-order bywe in sccumuisser | | o "'u(/ 2
AV — 2 st chear carry flag since used in yudwenon 1 ' N7, V. 0.©
o AP 07 \.&SLIIA.: b ¢ decrement (and possibly set borrow) | 7 i N 2 1 t&'ﬂg-‘"-(‘.”é v
oy o8 uovu.\ " aemporanly siore new high-order byte ia RO ! ! i (N
o e MOV ARI 4 put high-order byte in sccumulator ' [A RA &
; 10 SUBB A, %00h " :3ubwract Domow (Le.. cary bit is set if Somow 3t line %07) 3 1 N oM ¥
" MOV RI A semporsnly store new high-order byte ! R! 1 1 kvy)'.\ /ol 2\
12 SIMP check Jump 10 “shesk " : : - §
13 done: NOP program finished I ! A v
—— J .
TOTAL= 22
&~ Ol g — | k"—’:f——*' & ﬂ-l ‘i.;——‘;f —-,vf - e
B! WS —— ; SR e #
=T e | GRS NP S — |_=mns e,
Ve N— e —————— | ft-. kl'\'.'\ ;»
a7 oo oA waesi C‘"‘"\
(/t SF v o 5 _C(
it e “lugt &, 4T N
AR
s OCHLE. %o;(TRSTPuC (tor-a SE Clhwreg) o040 X
p— A A ARV
=cft Mmore THES Ll
1
Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition 3))
Copyright @ 1999, American Society for Engineering Education

One swength of microcontrollers is their on- chip R.-_\'(which allows faster memory access and therefore fewer
_cycles per instruction. This is dltmu'ated in Fig's 4 and 5. Although the MC68000 microprocessor code of Fig. 4

requires less bytes it must access the on-\.th R.-\M t'or reading and writing the inidal and final couns; this is
significantly slower than manipulatng on-chip RAM. However, the overall speed of the MC68000 microprocessor
code in Fig. 4 would be as fast as the 8051 microconmoller code of Fig. S if the difference berween the inital count
and the desired count was large enough (assuming equal clock speeds). The above discussion can be easily extended

to a comparison of 16-bit and 32-bit devices (i.e., when doing 32-bit arithmeric).

Figure 4. Example MC68000! ﬁﬁ.c:'oprocésaf program using 16-bit arithmeric to do a 16-bit task; Decrement the 16-bits at
RAM locarion 2000h unril it reaches the 16-bit number in general-purpose data register D2; then store count back mto

memory.
#OF #OF
LINE BYTES CYCLES
00 MOVE.W 52000. DO copy onginal count into register DO from RAM (off<hip) 4 12
01 check: CMP.W D0, D2 : compare DO and D2. set appropnate condition flag 2 S
02 DBE D0, check ; dectement. and jump 0 " check “ yntl DO and D2 equali 4 10to 12
03 MOVE.W D0, S2C00 ; write count to RAM (orf<chip) from DO 4 12
04 done: NOP ; program finished 2 -
TOTAL= 16 447 v “H

|

Figure 5. Example 8051 microconmoller program using 8-bit arithmeric to do a 16-bit task: Decrement the 8-bit contents of
internal RAM addresses 21h and 20h as one concatenated 16-dit number until it reaches the 16-bit number made by
concatenaring the contents of the 3-bit generai-purpose registers R3 and R2 [2).

#0OF #OF

LINE BYTES CYCLES
00 check: MOV A, 20h ;get low-order byte from on<chip RAM 2 1
01 CJINE A, 02h. dermit conditional jum to "dermmt” if not equal to R2 contents 3 2
02 MOV A, 21h :get high-order dyte from on-chip RAM 2 |
03 CJINE A, 03h, dermnit sconditional jump to " dermnt " if not equal to R3 contents 3 2
04 SIMP done icountcown finished. jurmp to "done” 2 2
08 dermnt: . MOV A, 20h :2¢t low-order dyte from on-<chip RAM for decrementing 2 | VL
06 CLRC imust clear carry flag sinces 1t 1s used as a borrow 1 l NS AV
07 SUBB A, #0lh :decrement (and possibiy set borrow) 2 1 \ 5 IN2°
08 MOV 20h A istore ne> high-order byte in on~<chip RAM 2 1 \/
09 MOV A, 21h :get high-order byte from on-chip RAM for decrementing 2 1 .o :
10 SUBB A. #00h subuac: borrow fi.e.. carry bit is set if borrow at line ¥07) 2 | .
I MOV 2lh A istore new jow-order byte :n on<iip RAM 2 |
12 SIMP check Jump to “check * 2 2
13 done: NOP iprogram fimished 1 1

TOTAL= 28 | &

Probably the most defining characterisdc of microcontrollers is the on-chip circuitry for interfacing with external
devices. This includes warchdog tmers. analog-to-digital and digital-to-analog converters (ADC's and DAC's),
pulse-width-modulated (PWM) ourputs for driving motors, and many counters for iming and conwol. These circuits
are not typically found on microprocessors.

The micr qcontrolle' is best suited as an embedded single-chip computer for conwolling peripheral devices, ‘
whereas the microprocessor is best suited for relatively high-speed general-purpose computing, high-precision | ~/i~
~math-intensive applications (¢.2., multimedia. scientific simuiadons, eic.), or programming which makes use of N
large address spaces. However. as the aumber of features that can fit on a smgle chip increases, the microcontoller ‘
and microprocessor of the furure could be packaged as a single device — a single-chip computer with all the
advantages of both. where the engineer or programmer could select which fearures to use. Although this might seem

wasteful, mass producrion could make these devices inexpensive enough to justify this strategy.

/ QA

s \:\.. \"\.\\

. . L . . N

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition [\ % J)
NI

Copyright © 1999, American Society for Engineering Education

[V. Different Perspecrives S S Sl "'F

The understanding of microprocessors and microconmollers can also be ennanced by considering) the differences
berween how programmers and engineers may view these devices. The compiex instruction-set and addressing
modes of most microprocessors might be considered a big advantage by systems-level programmers who are willing
(and able) to make use of these features -- this bias may even ourweigh the on-caip features of microcontrollers. For
example, if a microprocessor or microcontoller needed to be chosen for an appiicadon requiring analog numbers to
be read into the device, then manipulated using 16-bit arithmesic, then displayed on analog meters, the programmer
might decide that the code could be most effectively written for a 16-bit microrrocessor and therefore not choose a
16-bit microconmoller with built-in analog-to-digital (ADC) and digital-to-analog (DAC) converters, on-chip ROM
that might fit all the code, and on-chip RAM. An engineer however might choose 2 16-bit microcontroller because

of the simpler instruction-set (evea though more lines of program code migat be required), or because the on-chip

‘fearures eliminate the need to design board-level circuits to handle analog conversions and communicaton berween

the CPU and memory. T (: <k L$533)
/ <T \;L :1»7 !\\'O g
V. Laboratory Experiments N

)
Most courses in microprocessors or microcontrollers can beneft from laboratory experiments. Appendix A. lists
laboratory projects that can be used for microconwoller course [8]. These labs use an 8051 microcontroller-based

V1. Conclusions

A good way to learn the differezces berween microprocessors and micrococ=oilers is to work from a "minimal-
computer-architecture” common to both. This reinforces the understandizz of basic computer architecture
fundamentals. and isolates device differences so they can be easily idearifieZ. Discussing differences also helps
identifv which device is most suitabie for a given applicarion. Topics such as mathemarical capabilities or the ability
to conrtain all needed funcrionality on a single chip provide important exampies of differences.

Teaching any subject in a historical context heips ideatfy weads. and focuses on fundamental principles that do
not change over time. Since the beginning of the packaged CPU in 1971, the svoiudon of microprocessors has led to
many advances in computer architecture; many of waich will evenrually werk their way into microconmollers.
Furure microcontrollers could look like today's microrrocessors -- with ezharced mathematical funcrionality, and
numerous instruction speed-up schemes: however. some of the peripierai-conmrol feaures of microcontrollers are
unlikely to be found in furure micoprocessors. [t may also become possible 2t as the number of features that can
fit on a single chip increases, furure microconmoilers and microprocessors couwic 2e packaged as a single device --a
single-chip computer with all the advantages of both. where the engineer or pregrammer could select which fearures
to use.

The understanding of microprocessors and microcontrollers can also be exz2zced by considering the differences
between how programmers and engineers may view these devices. For examzie. a device could be selected for the
programming power of the insauczion-set. or for the simplicity of the insgucaon-set and minimization of additional
circuimy.

N test computer (the PU-552), and monitor program developed at Purdue University (2], [8]. If a microprocessor-
o ANV (based development system is used. some of the device-conrol type labs can be replaced with, for example, floating-
ARSENS 2 point arithmeric exercises. The programming language used for the labs in Apreadix A. is mostly 8051 Assembly -
o r;;" "V “Thowever C programming is also required for several labs. Students can aiso zeaefir from comparing code written
Ve QP in both C and Assembly for the same task.
X K
Q gl .‘:75 The tvpicai undergraduate course in microprocessors or microcontrollers recuires prerequisite studies in digital
'\ (2) circuits. The lab project shown in Fig. 6 can be used in a prersquisite digiml-cesign course to inoroduce the control
(v D,{Q} Z and flow of data in a microprocessor or microcontwoller.

R

/ \
Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition [\ J)

//

Copyright @ 1999, American Society for Engineering Education N4

i
!

Appeadix A.
Laboratory projects for microcontoller course [8):

Equipment onientaton and VO with C
Monitor program and program execution
Bus cycle timing analysis
Memory and /O expansion

Move instructions and band assembly
Branching and math instuctions
Timing loops

NALE N

Appeadix B.

8. Panlle! L'O and C program development
9. Keypad and 7-segment LED displays

10. Seriai IO

11. ADC's and DAC's

12. Stepper motors and Diginalkers
13. Individual projects

14, Lab pracucal exam

Figure 6 shows a digimi-design course laboratory projec: two inwoduce the coawol and flow of dam in a
microprocessor or microcoatroller. Themmmlogmnmntmo&rumlm
nmudumhtmlhdmhm&m@acmwlmw

wmmmmummmawmwmuwxu
the L.E.D. circuits controlled by the comparaior output can represent the conteass of a smtus register. A variaton of
this lab can be made by replacing the comparator with a 2-bit paralle! adder.

lastruction Set:
(OP-CODE=1): Compare operand 0 up-counter count
(OP-CODE™)): Compare operand 20 down-counter count

PULSE 1
OP-CODE OPERAND (TOGGLE SWITCHES) (DEBOUNCED PUSH-BUTTON)
#|FR r PULSE 2
| (DEBOUNCED PUSH-3UTTON)
v v :
T8IT T8IT o
UP-COUNTER DOWN-COUNTER \
WHICH RESETS WHICH SETS = ¢
TO 00 TO 11 O \L 4
AFTER 11 AFTER 00 \ L5
A i 2
g + N A
[
v
! MULTIPLEXER
o SELECT >
e g
:
*
| X
v
COMPARATOR 7 7
X<y X=Y ¥

' v v v - v
D o Cn O e

Figure 6. A simpie digital-design course laboratory projec: 10 introduce the control and flow of daa in a

MUCTOProcessor or microconwoiler.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition

Copyright @ 1999, American Society for Engineering Education

)

References

[1]
(2]
[3]
(4]
[5]

[6]

[7]
(8]

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition

K.J. Ayala, "The 8051 Microcontroller", 2nd ed., Minneapolis, MN: West Publishing, 1997.

R. H. Barnett, "The 8051 Family of Microcontrollers", Englewood Cliffs, NJ: Prentice Hall, 1995.
M. Kheir, "The M68HC11 Microcontroller", Upper Saddle River, NJ: Prentice Hall, 1997.

J. B. Peatman, "Design with PIC Microcontrollers", Upper Saddle River, NJ: Prentice Hall, 1998.

K. Hwang, "Advanced Computer Architecture: Parallelism, Scalability, Programmability", McGraw-Hill,
1993.

T. L. Harman and B. Lawson, "The Motorola 68000 Microprocessor Family", Englewood Cliffs, NJ:
Prentice Hall, 1985.

G. G. Langdon, " Computer Design", San Jose, CA: Computeach Press, 1982.

N. S. Widmer, "Introduction to Microprocessors Laboratory Manual", West Lafayette, IN: Learning
Systems, 1998.

Copyright © 1999, American Society for Engineering Education

G

D"‘o L\ Wﬂ"' 2 S"‘“’ '
7.

A g \% Fou.-ari (3% ookrs P BACK
of k\‘VA TA - Gonlc s Fore Pro2issords
. & 4iver MATS

e xpPrrgiEP S o
G)GQ = OoF WHAT EFELTS ek \

ePearwmror -
fr) chere HIT (o Pt B

Possi bl TWS
it Bar~eer
c A Tt SimviTR 6y, -

Q) -- - A —
RE Bl L 7 ':':""'-:.5
E £y r‘"’‘”""&“"l:m,Mé A
2 Sv
Urri Cotr A0 102 e s Phcsepe,
¢

e
OeoviTs Lo Pt

e g @
[eo). LALEE ’Ws')
= /

|} L — g 4] —

mnzwbummmmlmaum»aatm&omulmm
m&m&nﬁwWWhmﬁaMlmmhmdﬂle

L 8YTES CvCLES
ol check: CMP.W DO. D2 ; compare DO and D2. set sppropnate condition flag 2 4
02 DEE D0. check ; decrement. and jump 10 " check * yonl DO and D2 equal < 10212
03 done: NC? . program fimshed 2 =
TOTAL= 38 =2
1 i gLt R BRI
e Dl Zr
T=cez+ 1. ¥ -
T=[.49% 10 Sees

\

oo 4+ (o) - (s b7 e
* 8 &\5959015“‘-‘_ l.e#* Nﬁ‘»’)}
g

Ho%
l
{b ‘% = Jrstwe™ /17,/5”‘"4"’«=l

Based on Eq. 13, the CPU time in Eq. 1.2 can also be written as
10-¢/MIPS, Mm&m%ﬂnﬁﬁdhh&lduﬂt&%«

m&m&mhdnbwﬁndna

throughput W, defined by:

The

""—Lz.xcm @

NouthuW,-(lm’S)xw‘/l,ﬁuan. 1.3. The unit for W, is programs /secon
CPU throughput

mddﬂemmh&d-ndbmm or tim
mmanimmham fashio
then W, = W,. mmmmmmmmmw

308 AppendixA = mlmmw

A.D Introduction

(#r/¥ data). . _ % 7
/ \7 ¢
G o v’Q«\\;g,
WV h 4 (>}) 3 o
A.1 Mnemonics, Arranged by Fung"og,’ fv(\l:_ e A
| ST s 17 QAN N\, ok
O . i
e d AT
nesio A ,
9“9: Cot GosetNihrh, 1 co
1 COov
1 COvAC
- 1 COvaC
I COvac
1 gg\vuc
1 AC
p— 1 Covac
NOI#3T S90 o€ TS $20 muntens : : c
B 3
B
11
- 1 4 oo
|
1]
2 1
11
- » ‘ 2
- : B 1 4 oov
5 R 1 1 covac
- A~(add)-C — A 2 1 Ccovac
~| SussAerp A~{Rp)~C - A 1 1 covac
~| SUBBA#a A-n-C A 2 1 cova |

:""-\:'1 ‘{;3\"‘%
gt oAt Q §)>>

R
M Mz{‘vCQ?L"’ S . 3

.0
FAY Lid
APPENDIX IVD: INSTRUCTION EXECUTION TIMES \/;7' T’\’}

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait

e ——

.| states which must be added to the total instruction time.

g.number of bus read and write cycles for each instruction is also included with the
J%lng

data. This is encl s following the number of clock periods
d is shown as: here r is the number of read cycles and w is the number of write
c’ycles included in-the clock period number. Recalling that either a read or write cycle re-

ﬁiﬁes‘._@fcm&pedodsra-ﬂmmg number. given as 18(3/1) relates to 12 clock periods for
/the threeread cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
/ for .sgn_\gln_tgml_fygg_tjo\ndﬁhe processor. o

' NOTE

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMING

Table D-1 lists the number of clock periods required to compute an Instruction’s effective
address. It includes fetching of any extension words, the address computation, and
fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesis as (r/w). Note there are no write cycles involved In processing the effective
address.

Table D-1. Effective Address Calculation Times

Addressing Mode Byte, Word Long
Register
Dn Data Register Direct 010/0) 0(0/0)
An Address Register Direct 0(0/0) 010/0)
Memory
(An) Address Register Indirect 401/0) 812/0)
(An) + Address Register Indirect with Postincrement 401/0) 812/0)
- (An) Address Register Indirect with Predecrement 6(1/0) 1012/0)
dlAn) Address Register Indirect with Displacement 812/0) 12(3/0)
dlAn, ix)* Address Register Indirect with Index 10(2/0) 14(3/0)
xxx. W Absolute Short 8l2/0) 121370
xxx. L Absolute Long 12(3/0) 16(4/0)
d(PC) Program Counter with Displacement 8(2/0) 12(3/0)
d(PC, ix)* Program Counter with Index 10(2/0) 14(3/0)
#xxx Immediate 401/0) 812/0)
/ L\
* The size of the index register lix) does not affect execution time. [5))

A &)
N 4

Y

SX MICROPROCESSOR/Intel487™ SX MATH COPROCESSOR 3
w‘—__ — - s 2
D =
Table 10.1. Intel486™ SX Microprocessor/Intel487™ SX Math
CoProcessor Integer Clock Count Summary

e Siaa

=

— — Penalty if -
INSTRUCTION FORMAT CachOHIt | o ochettiss| Mo |
INTEGER OPERATIONS :
MOV = Move: e
reg1 10 rog2 [1000100w |11 reqt reg2) 1
reg2 to reg1t [1000101\' l‘ll rog1 nél 1
memory 10 reg Eoootom]m rog rlm] 1
reg to memory L1000100w Lmod reg m;l 1
Immediate to rag [1100011w [11000 reg|immodiate data 1
or 1011w rog _| immociato data 1
Immediate to Memary [nooonw @ooo rlm], '1.” 1
Momaory 1o Accumulator 1010000w | full displacoment 1
Accumulator to Momory 101000 1w | ful displacement 1
MOVSX/MOVZX = Move with Sign/Zero Extension
r0g2 0 reg! 00001111 [1011z11w [11 regr reg2] 3 %
momory 1o rog Eoooun l 1011:11w[mod rog lla 3 ,
z Instruction ‘;,
0 Movzx L
1 MOVSX :
W
PUSH = Push
(g [11119097 [11 110 rog | 4 4
o 01010 reg 1 *]
momory [11111111 |mod 110 wm| 4 =l
immedite (o1 101030 | immedato aua ' 3
PUSHA = Push Al L I
POP = Pop iy
rog [10001111 [11 000 reg) 4 _;
memory [10001111 [mod 000 wm] 5 |
POPA = Pop Al : .
XCHG = Exchange
rog1 with reg2 | 100001 1w [11 rogt rog2] 3
Accumulator with reg 3
Momory with reg Luoooonn lmod reg rlml 5
NOP = No Operation '
LEA = Load EA to Register [10001101 [mod req w/m]
no index register
with index registor !

- /--)\/ /-’ % .("/

B : §
?\ C/ ML RoLe T -4

Section 2.6 Instruction Set =
Status bits

Mnemonic, operands | Description Cycles S

bef A Clear bit b of register {, where b =0 1to 7 1

bs! b Set bit b of register {, where b= 010 7 |

clrw Clear W 1 4

cief f Clear 1 1 4

moviw k Move Beral valoe 1o W |

movwi f Move W o f |

movl W) Move fro For W 1 4

swapl LFwW) Swap nibbles of f, putting result into F or W 1

incf LFw) increment [, putting result in F or W 4

dec! LFow Decrement {, putting result in F or W | 2

comf{ W) Complement [, putting result in F or W 1

andiw k AND literal value into W 1 2

anowf 5w AND W with £, putting result in F or W) 2

ortw & Inclusive-OR iteral value into W | 4

lorwf LFw) Inclusive-OR W with {, putting result in F or W | L4

xoriw k Exclusive-OR lteral value into W 1 2

xorwf £.Fw) Exclusive-OR W with {, putting result in F or W | 2

addiw & Add literal value into W 1 C.oC2

addwl LW Add w and [, putting result in F or W 1 coc2

sublw k Subtract W from literal value, putting result in W 1 CoC2

subwf fFw) Subtract W from f, putting result in F or W 1 C.oC2

o 1 FwW) Copy f into F or W, rotate F or W leRt through the carry bit | C

rrf LFwW) Copy ! into ¥ or W, rotate F or W right through the carry bit 1 C

btfsc b Test bit b of register [, where b = 0 10 7; skip if clear 1)

befss b Test bit b of register I, where b = 0 to 7; skip i set 1)

decfsz LFw) Decrement {, putting result in F or W, skip f 2ero Ury

incfsz f.FwW) increment £, putting result in F or W, skip if zero 1)

goto abel Co 10 labeled nstruction 2

call labe! Call labeled subroutine 2

return Return from subroutine 2

retlw k Return from subroutine, putting literal value in W 2

retfie Return from interTupt service routine; reenabile interrupts 2

Clrwdt Clear watchdog timer 1 | NOT_TONOT O

sleep Co into standby mode | NOT_TONOT PO

nop No operation |

Figure 2-10 PIC16Cxx instruction set. e O TS LS

: AT e it e 5))
Ayt S
/

WAY i frAel

FETH

| L g‘
|

) DB DT |, B wEL2TE, HRATEBALL
o) =) Sad

T RNSTRELNGCH |

TIimING

-

 A—

|

t

' sm?z.es'\’\
ged. |Petssea
[~ 2-3-]
ugg
;23 o
sqs .?lﬁuﬁ)

’./Z-:y.i.’\ ¥
. Sofall Sz

Nn=2
¢x?€ L R20) /

CY €iJ

pul |

L W A2

o jol]

T iime

<)

3. Amhdahl’s Law for SPEEDUP
* Overcoming Amhdal’s Law

Amdahl’s Law

by J. Wunderlich, Ph.D.

Amdahl’s Law

The Computer Engineering version of the “law
of diminishing returns” or “law of diminishing
marginal utility”

Simply put, you can “speed-up” computer
performance in a measured way; however you
get less and less benifit for your effort as you
increase your effort.

Amdahl’s Law

“Speed-up” =T,y / T, ow

WHERE To|d = time to execute code prior to the implementation of a “new
feature” to speed-up machine performance

AND Tnew = time to execute code after the implementation of an “new
feature” to speed-up machine performance
ALSO, Tnew = Tbenifit + Tother
WHERE T, = the new time to execute the part of the code

that benifits from the “new feature”
AND T, .. = the time to execute the part of the code that does

not benifit from the “new feature”

Amdahl’s Law (€Xample):

Suppose a computer has a code segment that takes 100 msec to execute. And a
proposed new ALU could increase the performance of 40% of that code by 10
times. What is the potential speed-up of the entire computer?

To|d = 100msec
Tbenifit = ((40% * (100msec) / 10) = 4dmsec

T

=(60% * (100msec)) = 60msec
therefore T ., = Tpeniit T 1

other

other
= 4dmsec + 60msec

= 64msec
“Speed-up” =T 4/ Trow
= 100msec / 64msec = 1.56

SPEED-UP

of computer

Amdahl's Law
(alpha =% of code benefiting from new feature)

11

10
9
8
7 —— alpha = 100%
6 —a— alpha = 80%
5 —e&— alpha = 60%
4 —¥— alpha = 40%
3
2 - ———¢
1 -
0 T — T T T — T

1 2 3 4 5 6 7 8 9 10

Increased performance of PART of the
computer due to new feature

SPEED-UP

of computer

= e
o

O P N W »d 01 O N 0 ©

Amdahl's Law (applied to parallel processing)

(alpha =% of code"parallizable")

—i— alpha = 100%

—a— alpha = 80%

—&— alpha = 60%

—— alpha = 40%

1

2 3 4 5 6 7 8 9 10

Number of Processors

SPECTRUM.IEEE.ORE | HORTH AMERICAH | HOVW 2018

BREAKING
THE MULTICORE
BOTTLENECK

Simple hardware speeds
core-to-core communication

D Engineersat North

Carolina State Univer
sity and at Intel have come
up with a solution to one of
the modern microprocessor's
most persistent problems:
communication among the
processor's many cores. Their
answer is a dedicated set of
logic circuits they call the
Queue Management Device,
or QMD. In simulations, inte
gratingthe QMD with the pro
cessor's on-chip network at a
minimum doubled core-to
core communication speed
and, in some cases, boosted
it much further. Even bet
ter, as the number of
cores was increased, the
speedup became more
pronounced.

In the last decade, micro
processor designers started
putting multiple copies of pro
cessor cores ona single die as
a way to continue the rate of
performance improvement
computer makers had enjoyed
without causing chip-killing
hot spots to form on the CPU.
But that solution comes with
complications. For one, it
means that software
programs have to be written
so that work is divided
among processor cores. The
result: Sometimes different
cores need to work on the
same data or must coordinate
the passing of datafrom one
core toanother.

To prevent the cores
from wantonly overwrit
ing one another's informa
tion, processing data out of
order, or committing other
errors, multicore proces
sors use lock-protected soft
ware queues. These are data
structures that coordinate
the movement of and access
to information according to
software-defined rules. But
all that extra software comes
with significant overhead,
which only gets worse as the
number of cores increases.
"Communications between
cores is becoming a bottle
neck,"” says Yan Solihin, a
professor of electrical and
computer engineering who
led the work at NC State, in
Raleigh.

Thesolution-born of a dis
cussion with Intel engineers
and executed by Solihin's
student, Yipeng Wang, at
NC State and at Intel-was
to turn the software queue
into hardware. This effec
tively turned three multistep
software-queue operations
into three simple instruc
tions: Add data to the queue,
take data from the queue,
and put data close to where
it's going to be needed next.
Compared with just using the
software solution, the QMD

sped up asampletask such as
1

IT'SGETTING CROWDED: ThisIntel Haswell
EXXeon E7 V3 processor has 18 cores trying to-
work together without messing up one another's
calculations. A bit of additional hardware could
speed up communication among the cores.

packet processing - like network
nodes do on the Internet-by a
greater and greater amount the
more cores were involved. Forl6
cores, QMD worked 20 times as fast as
the software could.

Once they achieved this result, the
engineers reasoned that the QMD might

-
SPECTRUM.IEEE.ORGE | MHORTH AMERICAH | HOY¥ 2016 |[/

be able to do a few other tricks-such as
turning more software into hardware.
They added more logic to the QMD and
found it could speed up several other
core-communications-dependent func
tions, including MapReduce, a technol
ogy Google pioneered for distributing
work to different cores and collecting

Y the results.

Srini Devadas, an expert in cache
control systems at MIT, says the QMD
addresses "a very important problem."
Devadas's own solution for the use of
caches by multiple cores-or even mul
tiple processors-is more radical than
the QMD. Called Tardis, it's a complete
rewrite of the cache management rules,
and so it is a solution aimed at proces
sors and systems of processors further in
the future. But QMD, Devadas says, has
nearer-term potential. "It's the kind of
work that would motivate Intel-putting

in asmall piece of hardware for asig
nificant improvement."

The Intelengineers involved couldn't
comment on whether QvDwould find
its way into future processors. How
ever, they are actively researching its
potential. (Wangis nowaresearch sci
entist at Intel.) The engineers hope that
QMD,among other extensions of the
concept, can simplify communication
among the cores and the CPU's input/
output system.

Solihin, meanwhile, is inventing
other types of hardware accelerators.
"We have to improve performance by
improving energy efficiency. The only
way to dothat is to move some software
to hardware. The challenge is to figure
out which software is used frequently
enough that wecould justify implement
ing it in hardware," he says. "There is
a sweet spot." -SAMUEL K. MOORE

This is NOT better than the Ideal Case
but may be an improvement on the
upper bound of Amdahl’s Law

Amdahl's Law
Law of Diminishing Returns

>

’T|»-
-

Speedup (n)

>

N processors

Image from: https://www.javacodegeeks.com/wp-content/uploads/2

https://www.javacodegeeks.com/wp-content/uploads/2013/02/amdahl.jpg

4. Mathematical Models of Speedup

NAME

CS/ENGR 433
Advanced Computer Engineering
Exam #1
Spring, 2004
Dr. Wunderlich

3. Imagine a multiprocessor system which, when started up, begins solving a problem by parsing it into pieces which require the use of
additional processing elements at a increasing rate of (# of PE’s) = 3*(t*2) where t is time in seconds. At t = Osec, the # of PE's =
0. The problem takes exactly 3 seconds to be solved.

a) Compute the “average parallelism” using the discrete method (i.e., add the blocks)

b) Compute the “average parallelism” using integration (i.e., the “continuous” way)

¢) Find a general representation (i.e., equation) for (a) and (b) with t as an independent variable, then make a table of (a) vs.
(b) with a column for relative error and then show how the error changes as t is increased from 3 to 7 seconds by one
second intervals. (remember that no calculators are allowed).

Cslenae 433 MOTEAMEL oggnd 3 Setutien

’
¥ of &5
t 32
0 0
1 3
2 12
3 27
4 48
5 75
i
12 -
3 —t
Timea
2, $84esDS
A)o\
Z 1t B/ < (Ca)+bae)rlze) 15 TS
|+ * 3
@)CorTinveus: Fomee- e % 73 : =@
\ —
e g F(Aat = L 3
(1a. | LowtA
Zuugn

c)ase- o YC o TINSouS |
\SLee T

;(o)-v\ +§M1-\ + 9("-)¥l ForT=D A=")r_(‘r?' o‘)

\
A @ Foueed T ﬁ
‘\,.2.-«“- (sc) »x) _%) =
S S)=360, 1A= _3_@;;;1-3:_?3)—') Aot

/A"’[% ") M,Agﬂé))

i

(O\ScahTE Cortioyaes] REATIVE BT T
a5 A: %[g."\‘] A: Tz E :L_A_ca'_igB % 160
\ 3 %[lil‘j: S C) E'-"(?;—?Nw =(—s‘t)1.|“= 807.:
4 |2eangeapan e [elim e
S -:;-[l +‘++ﬂ+\q =%[3q= 18i 25 E= —S‘—;‘-E)N“ = (%)*'“8@

Lts

29

>
W
=

1.2

The Area under a Curve

Let us now consider the problem of finding the area of a given plane region. We
have an intuitive idea of what we mean by the area of a plane region; yet when
someone says that the area of some irregular region is 5 square units, exactly what
is meant? In other words, can we give a general definition of the area of a plane
region? Before attempting to do so, let us consider some properties of arca.

A
S

o 1

y/a

A
N &

184 The Integral

A(R,) = A(R,) A(R) = A(R,) + A(R;)
(a) ()
Figure 7.1

1. If R is any region, then the area of R, A(R), is a real number and A(R) > 0.
2. If R, and R, are congruent regions, then A(R,) = A(R,) (see Figure 7.1(a)).

3. If R =R, U R,, where R, and R, have only boundary points in common, then
A(R) = A(R,) + A(R,) (see Figure 7.1(b)).

While these three properties tell us something about arca, they give us no way of
assigning a specific number as the area of a given region. In order to make such an
assignment, we consider the area of a very simple region.

4. The area of a rectangle of length / y
and width wis A4 = Iw. A
With these four properties it is possible l
to determine the area of any polygon (recall g
that a polygon has a finite number of straight :

sides). But suppose we want to find the
area “under the curve” y = x* fromx =0
to x = 1, that is, the area of the region
bounded by y = x?, the x axis, and the
vertical lines x =0 and x =1 (see Figure
7.2). This region has one curved side. How R H :
can we handle this case? Suppose we take a 0 = xo| 4 x4 xz\ Xyt Xpo 11 X,
lesson from our discussion of the slope of a xt xt
graph. There we approximated the tangent
line with a secant line and noted what hap-
pened to its slope as it moved closer and Figure 7.2
closer to the tangent line

Since the area of a rectangle is known, let us approximate the area we want with
areas of rectangles. This is done in the following way. We subdivide the interval
[0, 1] MOt necessarily equal) subintervals (see Figure 7.2) by means of the
numbers

— X

*
X3 x>

Xy Xys X3y +ees Xp—15 X, Where xo=0and x,=1.

Within each subinterval we select a number in any way we choose from the left- to

the right-hand end point. Let us call these numbers A
/ S

*x %k % o)\
xl, x2) x3 3 ey x:. b |:\ [/-’” !.'ll.ll

7.2 The Area under a Curve 185

Now let us construct a rectangle for each subinterval, using the subinterval itself as
the base and f(x}") as the altitude. Thus the sum of the areas of all of these rectangles
gives an approximation (although perhaps a very poor one) of the area we seek. This
sum is

FOD = X0) + F(x)(xz — x1) + (%) (x5 — Xa) > N — Xae)
f(x?)(xi = Xi-1)-

M=

1

]

In order to simplify this expression, we reintroduce the delta notation that was
used in Section 6.3. It was noted there that Ax represents a difference of two values
of x. In particular, we define

Ax,- = x,' -— x,'_l.

Thus Ax; represents the width of the ith rectangle. With this notation our approx-
imating sum is

M=

Sx¥) Ax;.

i=1

Let us now consider the question of the
error committed in making this approxi-
mation. There are two types of errors (see
Figure 7.3), which we shall call positive
and negative errors. A positive error occurs
when a portion of a rectangle lies outside
the original region R; errors of this type
tend to make the sum greater than the area
desired. A negative error occurs when a _ '
portion of R lies outsideall of therectangles;
errors of this type tend to make the sum
less than the area desired. In order to geta
better approximation of the area of R, we
must find a way to decrease both types of

ositive
error

egative
rror

errors. Let us consider the positive errors) L
first.
Suppose the interval [0, 1] is subdivided e 7.3

as shown in Figure 7.4(a). If the x*'s are

chosen to be the right-hand end points, the positive error is the largest possible one
for that subdivision. It is represented by the shaded portion of Figure 7.4(a). Now
suppose that each interval of the first subdivision is itself subdivided to give the finer
subdivision of Figure 7.4(b). The largest possible positive error is now smaller than
it was for the first subdivision. This error is represented by the shaded portion of
Figure 7.4(b). The difference between this error and the first is represented by the
unshaded rectangles above the curve. By further subdivision, as in Figure 7.4(c), the
largest possible positive error is reduced still further. Thus, as we take ever finer
subdivisions, the maximum positive error (and thus any positive error) can be made
as small as we choose. A similar analysis shows that we can make the negative error
as small as we choose by taking the subdivision fine enough.

186

The Integral

()

(c)
Figure 7.4) 0};"

7.2 The Area under a Curve 187

All of the foregoing analysis suggests a limiting process. Thus it appears that the
area we want is the limit of the approximating sum as the lengths of the subintervals
approach zero. The analysis also suggests that the result is independent of the way in
which we subdivide (as long as the lengths of all of the subintervals approach zero)
and the way in which the x}"’s are chosen. Let us now apply this method to our original
problem.

Example 1

Find the area under the curve y = x2 from x=0to x = 1.

First of all, we must subdivide the interval [0, 1] and then choose the x?’s. In order
to simplify the algebra involved, let

us subdividetheintervalinton equal

subintervals and choose the x?’s to y

be the right-hand end points of the.

£
subintervals (see Figure 7.5). Thus
Xo =g=0, 1
x¥ ===ty
1 n
Xy ==,
- x=2
2 n
X2 ==,
n i
X} =-,
; ‘Th — =1 | %
Xy ==, Xo Xy Xa Xy oee- Xn
n
xXn = - 1
n no
Xy o =1. Figure 7.5

We see that the length of each of the » equal subintervals is 1 [n, and the lengths
of all of them are approaching zero as n gets large and positive. This last obser-
vation allows us to simplify our notation for the limit.

A=lim 3 fGD)Ax,

=im 2 r(2)()

2 . = 1

W 2 (S Note 1.)
1o

=lim — }i (By Theorem 7.3(a))

ne+o N7 1=1

s ditis 1 n(n+1)2n+1)

N+ n3 6

(By Theorem 7.2(c))

e)

N+ o) 6

(See Note 2.)

/] N
1 p SN

TRAY
- &
3 1‘f’| _.II_.II .'l'l
7

NS

188 The Integral

Note 1: Since our original function is in the form f(x) = x2, it follows that
f(iln) =(ifn)* = */n*.

Note 2: We have divided both numerator and denominator by n>. In the numerator,
each factor was divided by one of the »’s.

Perhaps you feel critical of our answer in Example 1, because we used the right-hand
end points throughout, so that our approximating sums are all bigger than the area
we want. If the answer is incorrect, it must be too large. Let us now use the left-hand
end points. Since the approximating sums are all smaller than the area we want (see
Figure 7.6), we feel that the result will certainly
not be greater than the area under the curve
—either it will be the area we want, or it will
be less than that area. In this case x; = i/n as
before, but x; = (i — 1)/n. Thus ¥

A= lim Y fixhAx,

n—=+ow i=1

-im 5 7(59))

n (i-1)* 1

= |i — - X
"_l.lin) l;l nZ n o Xy X2 Xy v Xn
| D .
= lim =) (—1)? Figure 7.6

n—=+o N i=1

l(n — Dn(2n - 1)

= lim (see Problem 33, Section 7.1)

n—+ o n3 6

= lim = e
n—+ o 6

=1

_..3.

We see that we have exactly the same result as in the previous case. It seems reason-
able to expect that, if we get 1/3 in both of these extreme cases, we should get 1/3 in
any case.

The fact that the result is independent of the choice of the x;’s is important. Similarly,
it is important to note that the result is independent of the choice of the subdivision
(sec Problem 20). Unfortunately, these important facts are also difficult to prove,
and we shall not attempt proofs here.

Example 2

Find the area under the curve y = x?, fromx =1to x =3.

Since we have inferred that the result we get is independent of both the sub-
division and the choice of the x{’s, we shall subdivide the interval [1, 3] into n
equal intervals and choose the x{’s to be right-hand end points (see Figure 7.7).

Because we are subdividing an interval
of length 2 into n equal intervals, the
length of each is 2/n. Thus

Xo=l, xT=l+%.
2
xl‘_l+_, 4
" x§=l+;,
x1=l+%9
x7=l+£,
n
xl=l+"—;)
: =142,
x.=l+2=3.
n
4= lim, &, st
= lim f(l+ 2
—l-:-tﬂz n
= lim (1-{-2') 2
neto (=] n
» 2
= lim 2‘,(1+4'+4L)Z
---un-x n
= lim 3[n+5"("+1)
ne4+o N 2
4n(n+l)(2n+1)
n’

)

1 8 26
(2-*-;)]—2-{-.4-1'-3— 3

y
A

e

1
Figure 7.7

5. Common Benchmarks

Video Card Benchmarks

High End CPUs - Intel vs AMD

Hard Drive Benchmarks

RAM

PC Systems

Android

i0S /iPhone

This chart comparing high end CPUs is made using thousands of PerformanceTest benchmark results and is updated daily. These are the high end AMD and
Intel CPUs are typically those found in newer computers. The chart below compares the performance of Intel Xeon CPUs, Intel Core i7/i9 CPUs, AMD
Ryzen/Threadripper CPUs and AMD Epyc with multiple cores. Intel processors vs AMD chips - find out which CPUs performance is best for your new
gaming rig or server!

B

=X

CPUS

High End

High Mid Range
Low Mid Range
Low End

Best Value
{On Market)

Best Value XY
Scatter

Best Value
(Al time)

New Desktop

New Laptop

Single Thread

Systems with
Multiple CPUs

Overclocked

Power
Performance

CPU Mark by
Socket Type

CPU Mega List

Search Model

IR R (LA (AR (R (R QR (O {OK (N (O (QR { QR (3K (O (X (S (AR (R ("

CPU Mark

=

AMD Ryzen Threadripper 3990X
AMD Ryzen Threadripper 3970X
AMD EPYC 7742

AMD EFYC 7T02P

AMD Ryzen Threadripper 3960X
AMD EPYC 7452

AMD EFYC T302P

AMD Ryzen 9 3950X

Intel Xeon W-3275M @ 2.50GHz
AMD EPYC T402P

Intel Core i3-10980XE @ 3.00GHz
AMD EPYC T502P

Intel Xeon W-3265 @ 2.70GHz
Intel Xeon Platinum B268 @ 2.90GHz
Intel Xeon W-3175X @ 3.10GHz
Intel Core i3-9980XE @ 3.00GHz
AMD Ryzen 9 3800X

Intel Xeon Gold 6254 @ 3.10GHz
AMD Ryzen 9 PRO 3300

Intel Core i3-10940X @ 3.30GHz

Intel Xeon Gold 62120 @ 2.40GHz

PassMark - CPU

High End CPUs
Updatad 16th of April 2020

CPU Mark

Price Performance

Mark

https://www.cpubenchmark.net/high end cpus.html

78,340
61,192
60,041
58,411
55,542
48,508
39,209
39,211
37,262
35,872
34,857
34,789
34,001
34,089
33,346
33,286
32,837
32,293
32,006
31,511

31,107

Price (USD)
$3,739.99
$1,899.99
$7,579.00
$4,783.99
$1,416.81
$1,950.00

§935.40

§737.99
$7,453.00°
$1,384.61
$979.00
$1,649.99
$4,551.37*
$6,005.98*
$3,103.94
$2,999.00°

$434.00
$3,620.00°

NA
$1,099.99
$2,000.00°

https://www.cpubenchmark.net/high_end_cpus.html

CPU Benchmarks _ Hard Drive Benchmarks RAM PC Systems Android iOS / iPhone

High End Video Card Chart

This chart made up of thousands of PerformanceTest benchmark results and is updated daily with new graphics card benchmarks. This high end chart
contains high performance video cards typically found in premium gaming PCs. Recently introduced ATI video cards (such as the AT| Radeon HD) and
nVidia graphics cards (such as the nVidia GTX and nVidia Quadro FX) using the PCI-Express (or PCI-E) standard are commeon in our high end video card

charts.

7 VIDEO CARD

High Mid Range
Low Mid Range
Low End

@ Best Value

Common

Market Share
(30 Days)

H] l::ompareo

O\ Video Card Mega
List

Search Model

57 GPU Compute
* Video Card Chart

G3D Mark

Videocard

KEE{ER (AR COE (AR (AR (K (O (AR (O (AR C O CAKCAR C O (IR ¢4

GeForce RTX 2080 Ti
GeForce RTX 2080 SUPER
GeForce RTX 2080

Quadro RTX 8000

GeForce RTX 2070 SUPER
TITAN V

Radeon V1|

TITAN RTX

GeForce GTX 1080 Ti
TITAN V CEO Edition
Radeon RX 5700 XT

GeForce RTX 2070

Radeon RX 5700 XT 50th Anniversary

GeForce RTX 2060 SUPER
Quadro RTX 4000
Quadro RTX 5000

NVIDIA TITAN Xn

Price Performance

PassMark - G3D Mark

High End Videocards

Average G3D Mark

21,128
19,572
19,091
18,467
18,143
17,883
17,647
17,308
17,287
16,988
16,534
16,356
16,264
16,231
16,181
16,019

15874

https://www.cpubenchmark.net/high end cpus.html

Price (USD)

899.99
699.99
629.99

4,741.49°
529.99

2,149.99*
549.99

2,489.99
800.08*
NA
379.99
399.99
NA
397.99
899.00*
NA

1.398 68"

https://www.cpubenchmark.net/high_end_cpus.html

CPU Benchmarks

% VIDEO CARD

i

LN

Q

-

u

High End

High Mid Range
Low Mid Range
Low End

Best Value

Common

Market Share
(30 Days)

(0]

Compare

Video Card Mega
List

Search Model

GPU Compute
Video Card Chart

https://www.cpubenchmark.net/high end cpus.html

(OO AR O (O { O < K (O < K < QK C QK C QK G CE CRE < QR C QIR (R < K QK < QK € QR { QR

Hard Drive Benchmarks RAM PC Systems

G3D Mark

Price Performance

Android

i0S / iPhone

PassMark - Direct Compute (Operations / Second)

s
(=N
g
o
d

TITAN vV CEO Edition
TITAN V

GeForce RTX 2080 Ti
Quadro GV100

GeForce GTX 1080 Ti
NVIDIA TITAN X

NWIDIA TITAN Xp

TITAN Xp COLLECTORS EDITION
GeForce RTX 2080 SUPER
GeForce RTX 2080

Quadro RTX 6000

TITAN RTX

Quadro PE000

Radeon RX 5700 XT 50th Anniversary
Quadro RTX 8000

GeForce RTX 2070 SUPER
Radeon RX 5700 XT
Quadro RTX 5000

Radeon Pro Vega Il
GeForce GTX 1080
Radeon VII

Quadro GP100

GeForce RTX 2080 (Mobile)

Top Performing Videocards

Average Ops/Sec

10,571
10,486
10,265
9,555
9,499
9,224
9,067
9,055
8,853
8,753
8,681
8,579
8,502
8,447
8,340
8,097
8,082
7,836
7,598
7,550
7,440
7,404

7,403

Price (USD)
NA

1,750.00
949.99
NA
599.99
608.10
1,398.68
NA
699.99
569.99
6,300.00°
129.98
2,749.99
NA
4,741.49"
499.99
45.50
NA
NA
29.98
594.50
NA
NA

https://www.cpubenchmark.net/high_end_cpus.html

CPU Benchmarks Video Card Benchmarks _ RAM PC Systems Android i0S /iPhone

High End Hard Drive Chart

This chart is made using thousands of PerformanceTest benchmark results and is updated daily. These averall scores are calculated from three different
tests measuring the read speed, write speed and seek time of hard disk drives. The chart contains drives from many of the major manufacturers such as
Seagate, Western Digital (WDC), Hitachi, Maxtor and Samsung. The higher scoring drives in this chart are typically those with greater RPM values
(10,000/15,000 RPM) or that are Solid State Drives.

7 HARD DRIVE

;".’i High End

High Mid Range
Low Mid Range
Low End

@ Best Value

S3D Chart
Commeon

Market Share
(30 Days)

Large Drives Chart

Q Hard Drive Mega
List

Search Model

Info to Decoding
Drive Names

https://www.cpubenchmark.net/high end

Disk Mark

Price Performance

PassMark - Disk Rating

9
&

XPG GAMMIX S11 960GB
CSSD-M2B1TPG3VNF

NVMe Force MPG00

Seagate FireCuda 520 SSD
ZP1000GM30002

Sabrent Rocket 4.0 2TB

Viper M.2 VP4100

Corsair Force MP600 1TB

Sabrent ROCKET 4.0 1TB

Corsair Force MPG00 2TB

Gigabyte AORUS NVMe Gend M.2 1TB
XPG GAMMIX S50

ADATA SX8100NP

Gigabyte AORUS NVMe Gen4 M.2 2TB
DIGISTOR 1TB

RevuAhn NX2200A 1TB

R ER { QLB (QE (R (O (R (R IK (SR (I (O (PR (R

PM981a NVMe SED Samsung 512GB

High End Drives

cpus.html

52,127
33,691

33,382
33,154

32,356
31,744
31,1
30,990
30,581
30,189
30,037
28,773
28,535
28,260
27,800

27,759

Price (USD)
NA

NA
NA

NA

NA
219.99
259.99
NA
399.99
229.99
NA
NA
419.99
NA
NA
NA

https://www.cpubenchmark.net/high_end_cpus.html

Top Read Uncached (DDR4) Memory Chart w/ Intel CPUs

CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks - PC Systems Android iOS / iPhone

Top Memory Chart

This chart is made using thousands of PerformanceTest benchmark results and is updated daily. These charts below shows the transfer rate in MegaBytes
of memory sticks. The higher the transfer rate the better the performance. The chart contains modules from many of the major manufacturers such as G
Skill, Corsair, Mushkin, Kingston, Patriot, Crucial.

From our testing and confirmed by the thousands of benchmarks we have collected, memory performance is highly dependent on the CPU. Less powerful
CPUs may not be able to utilize the full capability of the memory modules. Therefore, these charts are a sub-set of all the results, taken from systems with
newer (fast) CPUs. Systems with slow CPUs have been excluded.

B>

=

®

https://www.cpubenchmark.net/high end cpus.html

RAM

Top Read Intel
(DDR4)

Top Read AMD
(DDR4)

Top Intel (DDR3)

Top Read AMD
(DDR3)

Top Read (DDR2)

Top Write Intel
(DDR4)

Top Write AMD
(DDR4)

Top Write Intel
(DDR3)

Top Write AMD
(DDR3)

Top Write (DDR2)

PassMark - Memory Transfer Rate

Memory Model

LCOR COR AR (R <O {OI ¢ O < I COIE L QUK (O SO { R {4

Galaxy Microsystems Ltd. GALAX GOC
2016 8GB

G SKill Intl F4-4500C19-8GTZSWE 8GB
G SKill Intl F4-4500C19-8GTZKKE 8GB
G SKill Intl F4-4000C19-16GTZKK 16GB
G SKill Intl F4-3600C16-8GTZN 8GB
Kingston KHX4266C19D4/8GX 8GB

G SKill Intl F4-4600C18-8GTZR 8GB
Corsair CMW16GX4M2K3600C16 8GB
G Skill Intl F4-4600C19-8GTZSWC 8GB
G Skill Intl F4-3733C17-16GTZKK 16GB
Corsair CMK16GX4M2F4500C19 8GB
G Skill Intl F4-4400C19-8GTZSW 8GB

Apacer Technology 78.CAGNK 40408 s (IIIIIIEEEENNNNND

G Skill Intl F4-4133C19-8GTZR 8GB

Top DDR4 Memory Modules (w/ Intel CPUs)

Transfer Rate

26,409 MB/s

25,073 MB/s
22,980 MB/s
22,588 MBI/s
22,498 MB/s
22,495 MBI/s
22,444 MBI/s
22,347 MBI/s
22,329 MB/s
22,178 MB/s
22,163 MB/s
22,144 MB/s
22,138 MB/s
22,111 MB/s

Price (USD)
NA
NA
NA
NA
NA
NA
NA
228.99%
NA
NA
898.15"
NA
NA
NA

https://www.cpubenchmark.net/high_end_cpus.html

Top Write (DDR4) Memory Chart w/ Intel CPUs

CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks - PC Systems Android iOS [/ iPhone

Top Memory Chart

This chart is made using thousands of PerformanceTest benchmark results and is updated daily. These charts below shows the transfer rate in MegaBytes
of memory sticks. The higher the transfer rate the better the performance. The chart contains modules from many of the major manufacturers such as G
Skill, Corsair, Mushkin, Kingston, Patriot, Crucial.

From our testing and confirmed by the thousands of benchmarks we have collected, memory performance is highly dependent on the CPU. Less powerful
CPUs may not be able to utilize the full capability of the memory modules. Therefore, these charts are a sub-set of all the results, taken from systems with
newer (fast) CPUs. Systems with slow CPUs have been excluded.

B

RAM

Top Read Intel
(DDR4)

Top Read AMD
(DDR4)

Top Intel (DDR3)

Top Read AMD
(DDR3)

Top Read (DDR2)

Top Write Intel
(DDR4)

Top Write AMD
(DDR4)

Top Write Intel
(DDR3)

Top Write AMD
(DDR3)

Top Write (DDR2)

PassMark - Memory Write Transfer Rate

=
o
3
=]
<
=
]
a
&

LOER QR {OR O (O (AR {AK (ORI C QIR QI { QIR C QK (IR 0 ¢

Kingston KHX4266C19D4/8GX 8GB

G SKill Intl F4-4600C19-8GTZSWC 8GB
G SKill Intl F4-4500C19-8GTZKKE 8GB
Corsair CMK16GX4M2K4266C16 8GB

G Skill Intl F4-4400C18-8GTZR 8GB

Thermaltake Technology Go Ltd
RO09D408GX2-4400C19A 8GB

Galaxy Microsystems Ltd. GALAX GOC
2016 8GB

G Skill Intl F4-4400C18-8GTRS 8GB
Corsair CMR16GX4M2K4266C19 8GB
Corsair CMK16GX4M2K4333C19 8GE
G Skill Intl F4-4000C18-8GTZRE 8GB

G Skill Intl F4-4000C19-16GTZKK 16GB
G Skill Intl F4-4500C19-8GTZSWE 8GB

G Skill Intl F4-3600C16-8GTRG 8GB

Top DDR4 Memory Modules (w/ Intel CPUs)

Transfer Rate

21,668 MB/s
21,1774 MB/s
21,047 MB/s
20,546 MB/s

20,318 MB/s

20,095 MB/s

19,841 MB/s

19,566 MB/s
19,561 MB/s
19,541 MB/s
19,497 MB/s
19,397 MB/s
19,345 MB/s

19,322 MB/s

https://www.cpubenchmark.net/high end cpus.html

NA
NA
NA
NA
NA

NA

NA

NA
NA
NA
NA
NA
NA
NA

Price (USD)

https://www.cpubenchmark.net/high_end_cpus.html

CPU Benchmarks

Monthly Fastest Systems Leaderboard

Video Card Benchmarks

Hard Drive Benchmarks

RAM Android

PC Systems

i0S /iPhone

PassMark Software has delved into the thousands of PC benchmark results that PerformanceTest users have posted to its web site and produced lists of
the very best computer systems submitted. This chart shows the Top 10 Systems submitted this month.

7% PC SYSTEMS

A

=nll Fastest Desktops

Fastest Laptops
Fastest Servers

Fastest Systems
(This Month)

®

PC Configurator

PC Market Share
(30 Days)

@ Amount of RAM
Installed

Display Statistics

Windows OS
Market Share

Number of CPU
Cores

w7 AMD vs Intel
* CPU Market Share

Baseline No.

= BL 1219829

¥ BL 1221087

¥ BL 1221452

¥ BL 1216386

¥ BL 1214580

¥ BL 1220874

¥ BL 1215020

¥ BL 1215743

¥ BL 1215146

¥ BL 1218864

Top 10 Systems in the Month of April 2020

Chart

Intel Core i9-9900KS
Intel Core i9-9900KS
Intel Core 19-9900KS
Intel Core 19-9800K
Intel Core i9-9900K
Intel Core i9-9900K
Intel Core i9-9900KS
Intel Core i9-9900KS
Intel Core i9-9900KF

AMD Ryzen 9 3900X

Table

9534.7

Top PassMark Rating

CPU and Motherboard

ROG STRIX Z390-F GAMING

MEG Z390 ACE (MS-7B12)

ROG MAXIMUS XI APEX

MEG 2390 ACE (MS-7B12)

ROG MAXIMUS XI HERO (WI-FI)

ROG MAXIMUS X HERO

ROG CROSSHAIR VIl HERO (WI-FI)

Past Monthly Leaders

PassMarl

9534.7

9384.8

9370.5

9279.6

9274.4

9243.6

9185.4

2151.9

9063.7

9038.4

1 ZOI)G

11000

10000

60p0

Current Month Leader

T

5000

SEP MAR SEP
2012 2013 2013 2014 2014 2015 2015 2016 2016 2017 2017 2018 2018 2019 2019

MAR SEP

MAR SEP MAR SEP MAR SEP MAR SEP

MAR SEP

https://www.cpubenchmark.net/higsh end cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://study.com/academy/lesson/using-mips-flops-as-computer-
performance-parameters.htmli

MIPs

MIPs (million instructions per second) is the general measurement or benchmark of how many instructions a processor can handle in a
single second. Despite how useful this idea might seem, it is not commonly used anymore because there is no proper way of measuring
MIPs. In general, a MIPs rating was only used as a basic rule of thumb for computer performance, since a higher number did not mean
much for most real-world situations. In the business world, however, being able to calculate a MIPs rating allowed businesses to know the
cost of computing from the servers they were using.

FLOPs

The clock speed of a processor is measured in megahertz and gigahertz, but that by itself is not an accurate way to gauge computer
performance. FLOPs (floating-point operations per second) is yet another necessary factor needed to help measure the performance
of a processor as shown in Figure 1. A floating point number is a number that has floating decimal points, such as 0.008. A FLOPs
benchmark only measures the floating point operations and not the integers, which means it too cannot solely gauge computer
performance either.

It makes more sense to measure today's processor performance in FLOPs because clock speed frequencies do not truly measure raw
performance. A FLOPs measurement most accurately represents computer perfarmance since floating point math is standard in a variety
of programs or processes that we use today. It is especially useful for scientific and real-time applications, such as gaming or image
processing.

1.00E+18
100E+1%
100E+12
1.00E+0D
1 00E+D&
1.00EH3

1.00E+DD
1940 1850 1960 1970 1980 1090 2000 2000 2020

Figure 1: Computer Performance Evolution Over Time (FLOPs)

https://study.com/academy/lesson/using-mips-flops-as-computer-performance-parameters.html

https://towardsdatascience.com/20-popular-machine-learning-metrics-
part-1-classification-regression-evaluation-metrics-1ca3e282a2ce

towards
data science

DATA SCIENCE MACHINE LEARNING PROGRAMMING VISUALIZATION Al VIDEO ABOUT | CONTRIBUTE

20 Popular Machine Learning Metrics.
Part 1: Classification & Regression
Evaluation Metrics

An introduction to the most important metrics for evaluating
classification, regression, ranking, vision, NLP, and deep learning
models.

Shervin Minaee
< Oct 28, 2019 - 11 min read * , m n L—J

Note: This post has two parts. In the first part (current post), I will talk
about 10 metrics that are widely used for evaluating classification and
regression models. And in the second part I will talk about 10 metrics
which are used to evaluate ranking, computer vision, NLP, and deep
learning models.

https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce

