
Computer Performance
JT Wunderlich PhD

1. RISC (Reduced Instruction Set Computing)
vs CISC (Complex Instruction Set Computing)

2. Time (T) to execute a Machine Instruction

3. Ahmdahl’s Law for SPEEDUP
• Overcoming Ahmdal’s Law

4. Mathematical Models of Speedup

5. Common Benchmarks

2.20-4
2.20 Historical Perspective and Further Reading

High-Level-Language Computer Architectures

In the 1960s, systems software was rarely written in high-level languages. For example,

virtually every commercial operating system before UNIX was programmed in

assembly language, and more recently even OS/2 was originally programmed at that

same low level. Some people blamed the code density of the instruction sets, rather

than the programming languages and the compiler technology.
Hence, a architecture design philosophy called high-level-language computer

architecture was advocated, with the goal of making the hardware more like the

programming languages. More efficient programming languages and compilers,

plus expanding memory, doomed this movement to a historical footnote. The

Burroughs B5000 was the commercial fountainhead of this philosophy, but today

there is no significant commercial descendent of this 1960sradical.

Reduced Instruction Set Computer Architectures

This language-oriented design philosophy was replaced in the 1980s by RISC
(reduced instruction set computer). Improvements in programming languages, com-

piler technology, and memory cost meant that less programming was being done

at the assembly level, so instruction sets could be measured by how well compilers

used them, as opposed to how well assembly language programmers usedthem.

Virtually all new instruction sets since 1982 have followed this RISC philosophy

of fixed instruction lengths, load-store instruction sets, limited addressing modes,

and limited operations. ARM, Hitachi SH, IBM PowerPC, MIPS, and Sun SPARC

are all examples of RISC architectures.

A Brief History of the ARM

ARM started as the processor for the Acorn computer, hence its original name of

Acorn RISC Machine. Its architecture was influenced by the Berkeley RISC

papers.

One of the most important early applications was emulation of the AM 6502, a

16-bit microprocessor. This emulation was to provide most of the software for

the Acorn computer. As the 6502 had a variable length instruction set that was a

multiple of bytes, 6502 emulation helps explain the emphasis on shifting and

masking in the ARM instruction set.

Its popularity as a low-power embedded computer began with its selection as

the processor for the ill-fated Apple Newton personal digital assistant. Although

the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility to

ARM, and it subsequently caught on in several markets, including cell phones.

Unlike the Newton experience, the extraordinary success of cell phones explains

why three billion ARM processors were shipped in 2008.

CISC
Complex
Instruction
Set
Computing

RISC
Reduced
Instruction
Set
Computing

Review from Introductory course (just this page from Hennesey Comp Arch text)

1. RISC (Reduced Instruction Set Computing)
vs CISC (Complex Instruction Set Computing)

2. Time (T) to execute a Machine Instruction
Wunderlich, J.T. (1999). Focusing on the blurry distinction between microprocessors and

microcontrollers. In Proceedings of 1999 ASEE AnnualConference & Exposition, Charlotte,

NC: (session 3547), [CD-ROM]. ASEE Publications.

http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_ASEEPAPetown2.pdf

Memory Access
Cycle Time

Amdahl’s Law

by J. Wunderlich, Ph.D.

3. Amhdahl’s Law for SPEEDUP
• Overcoming Amhdal’s Law

Amdahl’s Law

The Computer Engineering version of the “law
of diminishing returns” or “law of diminishing
marginal utility”
Simply put, you can “speed-up” computer
performance in a measured way; however you
get less and less benifit for your effort as you
increase your effort.

Amdahl’s Law

“Speed-up” = Told / Tnew

WHERE Told = time to execute code prior to the implementation of a “new

feature” to speed-up machine performance

AND Tnew = time to execute code after the implementation of an “new

feature” to speed-up machine performance

ALSO, Tnew = Tbenifit + Tother
WHERE Tbenifit = the new time to execute the part of the code
that benifits from the “new feature”
AND Tother = the time to execute the part of the code that does
not benifit from the “new feature”

Amdahl’s Law (example):
Suppose a computer has a code segment that takes 100 msec to execute. And a
proposed new ALU could increase the performance of 40% of that code by 10
times. What is the potential speed-up of the entire computer?

Told = 100msec

Tbenifit = ((40% * (100msec) / 10) = 4msec

Tother = (60% * (100msec)) = 60msec

therefore Tnew = Tbenifit + Tother

= 4msec + 60msec

= 64msec

“Speed-up” = Told / Tnew

= 100msec / 64msec = 1.56

Amdahl's Law

 (alpha = % of code benefiting from new feature)

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10

Increased performance of PART of the

computer due to new feature

S
P

E
E

D
-U

P

 o
f

c
o

m
p

u
te

r

alpha = 100%

alpha = 80%

alpha = 60%

alpha = 40%

Amdahl's Law (applied to parallel processing)

 (alpha = % of code"parallizable")

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10

Number of Processors

S
P

E
E

D
-U

P

 o
f

c
o

m
p

u
te

r

alpha = 100%

alpha = 80%

alpha = 60%

alpha = 40%

, l
j''-,,,

•.,,,tcationprog,.,,,

• Boundary element

• Coils andWindings editor

AOOfTIONALBENEFITS:

• Combination of diffe,etrt solven

for multldlsclpllnotylllltllyJls

• Easy direct lmpo,tlapo,t of

geomet r f from/toCAO tools

• Automatic meshing and removal
of intersecting geometries

• Efficient multi-threading/

parallelization forspeed

• World class support team ready

to unlock your ideas

LORENTZ is our electromagnetic simulation tool to

design many varieties of electromagnetic devices. It has

number of advanced geometric modelling capabilities.

Its ability to import any computationaI domain or

structure from CAD makes it extremely useful.

- MikeDevine

Applications Engineer Manager,

Dexter MagneticTechnologies

I]
,'- ,.

I N T E G R A T E D
ENGINEERING SOFTWARE

HEWS

BREAKING

THEMULTICORE BOTTLENECK

Simple hardware speeds
core-to-core communication

D Engineers at North

Carolina State Univer

sity and at Intel have come

up with a solution to one of

the modern microprocessor's

most persistent problems:

communication among the

processor's many cores. Their

answer is a dedicated set of

logic circuits they call the

Queue Management Device,

or QMD. In simulations, inte

gratingthe QMD with the pro

cessor's on-chip network at a

minimum doubled core-to

core communication speed

and, in some cases, boosted

it much further. Even bet

ter, as the number of

cores was increased, the

speedup became more

pronounced.

In the last decade, micro

processor designers started

putting multiple copies of pro

cessor cores ona single die as

a way to continue the rate of

performance improvement

computer makers had enjoyed

without causing chip-killing

hot spots to form on the CPU.

But that solution comes with

complications. For one, it

means that software

programs have to be written

so that work is divided

among processor cores. The

result: Sometimes different

cores need to work on the

same data or must coordinate

the passing of datafrom one

core to another.

HH.;HHH

1111111111!11

m:mmm

1111111111111

!1!1111111111

!l!llllll!lll

{
I

To prevent the cores

from wantonly overwrit

ing one another's informa

tion, processing data out of

order, or committing other

errors, multicore proces

sors use lock-protected soft

ware queues. These are data

structures that coordinate

the movement of and access

to information according to

software-defined rules. But

all that extra software comes

with significant overhead,

which only gets worse as the

number of cores increases.

"Communications between

cores is becoming a bottle

neck," says Yan Solihin, a

professor of electrical and

computer engineering who

led the work at NC State, in

Raleigh.

Thesolution-born of a dis

cussion with Intel engineers

and executed by Solihin's

student, Yipeng Wang, at

NC State and at Intel-was

to turn the software queue

into hardware. This effec

tively turned three multistep

software-queue operations

into three simple instruc

tions: Add data to the queue,

take data from the queue,

and put data close to where

it's going to be needed next.

Compared with just using the

software solution, the QMD

sped up asample task such as

I''

IT'SGETTING CROWDED: ThisIntel Haswell

EXXeon E7 V3 processor has 18 cores trying to·

work together without messing up one another's

calculations. A bit of additional hardware could

speed up communication among the cores.

'i"

packet processing - like network

nodes do on the Internet-by a

greater and greater amount the

more cores were involved. For16

cores, QMD worked 20 times as fast as

the software could.

Once they achieved this result, the

engineers reasoned that the QMDmight

be able to do a few other tricks-such as

turning more software into hardware.

They added more logic to the QMD and

found it could speed up several other

core-communications-dependent func

tions, including MapReduce, a technol

ogy Google pioneered for distributing

work to different cores and collecting

the results.

Srini Devadas, an expert in cache

control systems at MIT, says the QMD

addresses "a very important problem."

Devadas's own solution for the use of

caches by multiple cores-or even mul

tiple processors-is more radical than

the QMD. Called Tardis, it's a complete

rewrite of the cache management rules,

and so it is a solution aimed at proces

sors and systems of processors further in

the future. But QMD, Devadas says, has

nearer-term potential. "It's the kind of

work that would motivateIntel-putting

in a small piece of hardware for a sig

nificant improvement."

TheIntelengineers involvedcouldn't

comment on whether QMDwould find

its way into future processors. How

ever, they are actively researching its

potential. (Wang is nowaresearch sci

entist at Intel.) The engineers hope that

QMD, among other extensions of the

concept, can simplify communication

among the cores and theCPU's input/

output system.

Solihin, meanwhile, is inventing

other types of hardware accelerators.

"We have to improve performance by

improving energy efficiency. The only

way to dothat is to move some software

to hardware. The challenge is to figure

out which software is used frequently

enough that wecould justify implement

ing it in hardware," he says. "There is

a sweet spot." -S AM UEL K. MOORE

NE'

.
SPECTRUM.IEEE. ORG I HORTH AMERICAH I HOV 2 0 1 6 I 1 7

This is NOT better than the Ideal Case

but may be an improvement on the

upper bound of Amdahl’s Law

Image from: https://www.javacodegeeks.com/wp-content/uploads/2

https://www.javacodegeeks.com/wp-content/uploads/2013/02/amdahl.jpg

4. Mathematical Models of Speedup

5. Common Benchmarks

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://www.cpubenchmark.net/high_end_cpus.html

https://study.com/academy/lesson/using-mips-flops-as-computer-
performance-parameters.html

https://study.com/academy/lesson/using-mips-flops-as-computer-performance-parameters.html

https://towardsdatascience.com/20-popular-machine-learning-metrics-
part-1-classification-regression-evaluation-metrics-1ca3e282a2ce

https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce

