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Plus Dr W’s IBM Research & Development:

JT Wunderlich PhD
IBM Hardware Development Engineer and Researcher (1996, 97, and 98)
IBM S/390 Hardware Development Lab, Poughkeepsie, NY

» Reviewed specifications for new Symmetric Multi-Processor (SMP) mainframe-supercomputer architectures (jointly
developed with IBM Germany) and engineered systems-level software and part of a custom operating system (SAK) to
"stress" features and force hardware failures through pseudo-random generation of machine-states and operating
scenarios. These SMP machines were designed for up to 20 processors and could be divided into 15 separate logical
partitions as well as scaled to 512 processors via a dynamic interconnect facility (IBM Parallel Sysplex). Programs ran
in three environments: VLSI circuit simulation, initial hardware test, and manufacturing. 64-bit processing (address and
data paths) was introduced during this time requiring simulating 64-bit arithmetic and virtual-address formation to test
simulated 64-bit prototype architectures using 32-bit machines; these prototypes were released as the "IBM eServer
zSeries" (now called zEnterprise)

« My research included:
1. Microprocessor branch-prediction verification strategies in a multiprocessor environment.
2. Random number generator (RNG) theory for hardware verification with seven different correlated random
number generators.

My development projects included creating 20,000 lines of high-level language (PL/X) and S/390 assembly code
including operating system application interfaces (API's). My RNG API code was also translated into C for an AIX
(IBM's UNIX) environment for IBM AS/400 minicomputers and RS-6000 workstations (the predicessor of POWER7
supercomputers like "Watson") requiring supervision of one engineer in Austin, TX via the IBM intranet. My other
development projects included verification programs for cache coherency, virtual addressing, space-switching, linkage
control, and 125 new IEEE floating-point instructions (to supplement the existing IBM Hex floating-point instructions).
All ~1400 IBM S/390 instructions were tested (including vector-register instructions from previous add-on vector
register unit)

» A patent process was initiated for my random number theory and API development.




IBM 5/390 Multiprocessor Hardware at the beginning of Dr. Wunderlich's IBM research
(IBM internal code names "Concerto” and "Monet"):
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“PROCESSORS”
Excerpt from Hennessey Computer Architecture book; edits by JT Wunderlich PhD

Historical Perspective and Further
Reading

7.14

There is a tremendous amount of history in multiprocessors; in this section we .

divide our discussion by both time period and architecture. We start with the SIMD SIMD=Sin g le
approach and the Illiac IV. We then turn to a short discussion of some other early Inst ti
experimental multiprocessors and progress to a discussion of some of the great nstruction,
debates in parallel processing. Next we discuss the historical roots of the present ;
multiprocessors and conclude by discussing recent advances. Multi P le Data

SIMD Computers: Attractive Idea, Many Attempts, No
Lasting Successes

The cost of a general multiprocessor is, however, very high and further design options
were considered which would decrease the cost without seriously degrading the
power or efficiency of the system. The options consist of recentralizing one of the
three major components. . . . Centralizing the [control unit] gives rise to the basic
organization of [an] .. . array processor such as the Illiac IV.

Bouknight, et al.[1972]

The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that
multiprocessor, as in more recent SIMD multiprocessors, is to have a single instruc-
tion that operates on many data items at once, using many functional units (see
Figure 7.14.1).

Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. Actual performance was at best 15 MFLOPS, versus initial predic-
tions of 1000 MFLOPS for the full system [Hord, 1982]. Delivered to NASA Ames
Research in 1972, the computer required three more years of engineering before it
was usable.

These events slowed investigation of SIMD, with Danny Hillis [ 1985] resuscitat-
ing this style in the Connection Machine, which had 65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and
address calculations that do not need parallel operation. The SIMD instructions
are broadcast to all the execution units, each of which has its own set of registers.
For flexibility, individual execution units can be disabled during an SIMD instruc-
tion. In addition, massively parallel SIMD multiprocessors rely on interconnection
or communication networks to exchange databetween processing elements.
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FIGURE 7.14.1 The llliac IV control unit followed by its 64 processing elements. It was
perhaps the most infamous of supercomputers. The project started in 1965 and ran its first real application in
1976. The 64 processors used a 13-MHz clock, and their combined main memory size was 1 MB: 64 x 16 KB.
The Illiac IV was the first machine to teach us that software for parallel machines dominates hardware issues.
Photo courtesy of NASA Ames Research Center.

SIMD works best in dealing with arrays in for loops. Hence, to have the oppor-
tunity for massive parallelism in SIMD, there must be massive amounts of data, or
data parallelism. SIMD is at its weakest in case statements, in which each execution
unit must perform a different operation on its data, depending on what data it
has. The execution units with the wrong data are disabled so that the proper units
can continue. Such situations essentially run at 1/nth performance, where 7 is the
number of cases.

The basic tradeoff in SIMD multiprocessors is performance of a processor
versus number of processors. Recent multiprocessors emphasize a large degree of
parallelism over performance of the individual processors. The Connection
Multiprocessor 2, for example, offered 65,536 single-bit-wide processors, while the
Illiac IV had 64 64-bit processors.
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After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMD model has once again been put to bed as a general-purpose
multiprocessor architecture, for two main reasons. First, it is too inflexible. A
number of important problems cannot use such a style of multiprocessor, and the
architecture does not scale down in a competitive fashion; that is, small-scale SIMD
multiprocessors often have worse cost performance than that of the alternatives.
Second, SIMD cannot take advantage of the tremendous performance and cost
advantages of microprocessor technology. Instead of leveraging this low-cost tech-
nology, designers of SIMD multiprocessors must build custom processors for their
multiprocessors.

Although SIMD computers have departed from the scene as general-purpose
alternatives, this style of architecture will continue to have a role in special-purpose
designs. Many special-purpose tasks are highly data parallel and require a limited
set of functional units. Thus, designers can build in support for certain operations,
as well as hardwired interconnection paths among functional units. Such organiza-
tions are often called array processors, and they are useful for tasks like image and
signal processing.

Multimedia Extensions as SIMD Extensions to
Instruction Sets

Many recent architectures have laid claim to being the first to offer multimedia
extensions, in which a set of new instructions takes advantage of a single wide
ALU that can be partitioned so that it will act as several narrower ALUs operating
in parallel. It’s unlikely that any appeared before 1957, however, when the Lincoln
Lab’s TX-2 computer offered instructions that operated on the ALU as either one
36-bit operation, two 18-bit operations, or four 9-bit operations. Ivan Sutherland,
considered the Father of Computer Graphics, built his historic Sketchpad system
on the TX-2. Sketchpad did in fact take advantage of these SIMD instructions,
despite TX-2 appearing before invention of the term SIMD.

Other Early Experiments

It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability.

Two of the best-documented multiprocessor projects were undertaken in the
1970s at Carnegie Mellon University. The first of these was C.mmp, which consisted
of 16 PDP-11s connected by a crossbar switch to 16 memory units. It was among
the first multiprocessors with more than a few processors, and it had a shared
memory programming model. Much of the focus of the research in the C.mmp
project was on software, especially in the OS area. A later multiprocessor, Cm*, was

MIMD=Multiple
Instruction,
Multiple Data
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a cluster-based multiprocessor with a distributed memory and a nonuniform access
time. The absence of caches and a long remote access latency made data placement
critical. Many of the ideas in these multiprocessors would be reused in the 1980s,
when the microprocessor made it much cheaper to build multiprocessors.

Great Debates in Parallel Processing

The turning away from the conventional organization came in the middle 1960s,
when the law of diminishing returns began to take effect in the effort to increase the
operational speed of a computer. . .. Electronic circuits are ultimately limited in their
speed of operation by the speed of light . . . and many of the circuits were already
operating in the nanosecond range.
W. Jack Bouknight, etal.
The Illiac IV System [1972]

.. . sequential computers are approaching a fundamental physical limit on their
potential computational power. Such a limit is the speed of light . . .

Angel L. DeCegama

The Technology of Parallel Processing, Volume 1]1989]

... today’s multiprocessors . . . are nearing an impasse as technologies approach the

speed of light. Even if the components of a sequential processor could be made to

work this fast, the best that could be expected is no more than a few million instruc-
tions per second.

David Mitchell

The Transputer: The Time Is Now[1989]

The quotes above give the classic arguments for abandoning the current form of
computing, and Amdahl [1967] gave the classic reply in support of continued
focus on the IBM 360 architecture. Arguments for the advantages of parallel
execution can be traced back to the 19th century [Menabrea, 1842]! Despite this,
the effectiveness of the multiprocessor in reducing the latency of individual
important programs is still being explored. Aside from these debates about the
advantages and limitations of parallelism, several hot debates have focused on how
to build multiprocessors.

From today’s perspective, it is clear that the speed of light was not the brick wall;
it was, instead, the power consumption of CMOS as the clock rates increased.

It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions
for 1995. We included these predictions in the first edition of the book, when the
outcome was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first was that a computer capable of sustaining a teraFLOPS—one million
MFLOPS—would be constructed by 1995, using either a multicomputer with 4K
to 32K nodes or a Connection Multiprocessor with several million processing

L -
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elements [Bell, 1989]. To put this prediction in perspective, each year the Gordon
Bell Prize acknowledges advances in parallelism, including the fastest real program
(highest MFLOPS). In 1989 the winner used an eight-processor Cray Y-MP to run
at 1680 MFLOPS. On the basis of these numbers, multiprocessors and programs
would have to have improved by a factor of 3.6 each year for the fastest program
to achieve 1 TFLOPS in 1995. In 1999, the first Gordon Bell prize winner crossed
the 1 TFLOPS bar. Using a 5832-processor IBM RS/6000 SST system designed
specially for Livermore Laboratories, they achieved 1.18 TFLOPS on a shock wave
simulation. This ratio represents a year-to-year improvement of 1.93, which is still
quite impressive.

What has been recognized since the 1990s is that although we may have the tech-
nology to build a TFLOPS multiprocessor, it is not clear that the machine is cost
effective, except perhaps for a few very specialized and critically important applica-
tions related to national security. We estimated in 1990 that achieving 1 TFLOPS
would require a machine with about 5000 processors and would cost about $100
million. The 5832-processor IBM system at Livermore cost $110 million. As might
be expected, improvements in the performance of individual microprocessors both
in cost and performance directly affect the cost and performance of large-scale
multiprocessors, but a 5000-processor system will cost more than 5000 times the
price of a desktop system using the same processor. Since that time, much faster
multiprocessors have been built, but the major improvements have increasingly
come from the processors in the past five years, rather than fundamental break-
throughs in parallel architecture.

The second Bell prediction concerned the number of data streams in super-
computers shipped in 1995. Danny Hillis believed that although supercomputers
with asmallnumber of data streams might be the best sellers, the biggest multiproces-
sors would be multiprocessors with many data streams, and these would perform
the bulk of the computations. Bell bet Hillis that in the last quarter of calendar year
1995, more sustained MFLOPS would be shipped in multiprocessors using few
data streams (<100) rather than many data streams (>1000). This bet concerned
only supercomputers, defined as multiprocessors costing more than $1 million and
used for scientific applications. Sustained MFLOPS was defined for this bet as the
number of floating-point operations per month, so availability of multiprocessors
affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In
1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams, so
Bell’s prediction was a clear winner. In fact, in 1995, much smaller microprocessor-
based multiprocessors (<20 processors) were becoming dominant.

In 1995, a survey of the 500 highest-performance multiprocessors in use
(based on Linpack ratings), called the Top 500, showed that the largest number
of multiprocessors were bus-based shared memory multiprocessors! By 2005,
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various clusters or multicomputers played a large role. For example, in the top 25
systems, 11 were custom clusters, such as the IBM Blue Gene system or the Cray
XT3, 10 were clusters of shared memory multiprocessors (both using distributed
and centralized memory), and the remaining 4 were clusters built using PCs with
an off-the-shelf interconnect.

More Recent Advances and Developments

With the primary exception of the parallel vector multiprocessors and more
recently of the IBM Blue Gene design, all other recent MIMD computers have
been built from off-the-shelf microprocessors using a bus and logically central
memory or an interconnection network and a distributed memory. A number of
experimental multiprocessors built in the 1980s further refined and enhanced the
concepts that form the basis for many of today’smultiprocessors.

The Development of Bus-Based Coherent Multiprocessors

Although very large mainframes were built with multiple processors in the 1960s
and 1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggests the key was that the smaller size of the microprocessor allowed the
memory bus to replace the interconnection network hardware and that port- able
operating systems meant that multiprocessor projects no longer required the
invention of a new operating system. In this paper, Bell defined the terms multi-
processor and multicomputer and set the stage for two different approaches to
building larger-scale multiprocessors. The first bus-based multiprocessor with
snooping caches was the Synapse N + 1 in 1984.

The early 1990s saw the beginning of an expansion of such systems with the use
of very wide, high-speed buses (the SGI Challenge system used a 256-bit, packet-
oriented bus supporting up to 8 processor boards and 32 processors) and later the
use of multiple buses and crossbar interconnects, for example, in the Sun
SPARCCenter and Enterprise systems. In 2001, the Sun Enterprise servers
represented the primary example of large-scale (>16 processors), symmetric
multiprocessors in active use.

Toward Large-Scale Multiprocessors

In the effort to build large-scale multiprocessors, two different directions were
explored: message-passing multicomputers and scalable shared memory
multiprocessors. Although there had been many attempts to build mesh and
hypercube-connected multiprocessors, one of the first multiprocessors to suc-
cessfully bring together all the pieces was the Cosmic Cube built at Caltech [Seitz,
1985]. It introduced important advances in routing and interconnect technology
and substantially reduced the cost of the interconnect, which helped make the

[ S
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multicomputer viable. The Intel iPSC 860, a hypercube-connected collection of
1860s, was based on these ideas. More recent multiprocessors, such as the Intel
Paragon, have used networks with lower dimensionality and higher indi- vidual
links. The Paragon also employed a separate 1860 as a communications
controller in each node, although a number of users have found it better to use
both 1860 processors for computation as well as communication. The Thinking
Multiprocessors CM-5 made use of off-the-shelf microprocessors. It provided
user-level access to the communication channel, significantly improving com-
munication latency. In 1995, these two multiprocessors represented the state of
the art in message-passing multicomputers.

Clusters

Clusters were probably “invented” in the 1960s by customers who could not fit all
their work on one computer, or who needed a backup machine in case of failure
of the primary machine [Pfister, 1998]. Tandem introduced a 16-node cluster in
1975. Digital followed with VAX clusters, introduced in 1984. They were originally
independent computers that shared I/O devices, requiring a distributed operating
system to coordinate activity. Soon they had communication links between com-
puters, in part so that the computers could be geographically distributed to increase
availability in case of a disaster at a single site. Users log onto the cluster and are
unaware of which machine they are using. DEC (now HP) sold more than 25,000
clusters by 1993. Other early companies were Tandem (now HP) and IBM (still
IBM). Today, virtually every company has cluster products. Most of these products
are aimed at availability, with performance scaling as a secondary benefit.

Scientific computing on clusters emerged as a competitor to MPPs. In 1993, the
Beowulf project started with the goal of fulfilling NASA’s desire for a 1-GFLOPS
computer for less than $50,000. In 1994, a 16-node cluster built from off-the-shelf
PCs using 80486s achieved that goal. This emphasis led to a variety of software
interfaces to make it easier to submit, coordinate, and debug large programs or a
large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem. (One
commercial result of the low-latency research was the VI interface standard, which
has been embraced by Infiniband, discussed below.) Low latency then proved
useful in other applications. For example, in 1997 a cluster of 100 UltraSPARC
desktop computers at U.C. Berkeley, connected by 160 MB/sec per link Myrinet
switches, was used to set world records in database sort (sorting 8.6 GB of data
originally on disk in 1 minute) and in cracking an encrypted message (taking just
3.5 hours to decipher a 40-bit DESkey).

This research project, called Network of Workstations, also developed the
Inktomi search engine, which led to a start-up company with the same name.
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Google followed the example of Inktomi to build search engines from clusters of
desktop computers rather than large-scale SMPs, which was the strategy of the
leading search engine, Alta Vista, that Google overtook. In 2008, nearly all Internet
services rely on clusters to serve their millions of customers.

Clusters are also very popular with scientists. One reason is their low cost, which
enables individual scientists or small groups to own a cluster dedicated to their
programs. Such clusters can get results faster than waiting in the long job queues of
the shared MPPs at supercomputer centers, which can stretch to weeks.

For those interested in learning more, Pfister [1998] has written an entertaining
book on clusters.

Recent Trends in Large-Scale Multiprocessors

In the mid-to-late 1990s, it became clear that the hoped-for growth in the market
for ultralarge-scale parallel computing was unlikely to occur. Without this market
growth, it became increasingly clear that the high-end parallel computing market
was too small to support the costs of highly customized hardware and software
designed for a small market. Perhaps the most important trend to come out of
this observation was that clustering would be used to reach the highest levels of
performance. There are now four general classes of large-scalemultiprocessors:

1. Clusters that integrate standard desktop motherboards using interconnec-
tion technology, such as Myrinet or Infiniban

2. Multicomputers built from standard microprocessors configured into pro-
cessing elements and connected with a custom interconnect, such as the IBM
Blue Gene

3. Clusters of small-scale shared memory computers, possibly with vector
support, including the Earth Simulator

The IBM Blue Gene is the most interesting of these designs, since its rationale
parallels the underlying causes of the recent trend towards multicore in uniprocessor
architectures. Blue Gene started as a research project within IBM aimed at the pro-
tein sequencing and folding problem. The Blue Gene designers observed that power
was becoming an increasing concern in large-scale multiprocessors and that the
performance/watt of processors from the embedded space was much better than
those in the high-end uniprocessor space. If parallelism was the route to high
performance, why not start with the most efficient building block and simply have
more of them?

Thus, Blue Gene is constructed using a custom chip that includes an embedded
PowerPC microprocessor offering half the performance of a high-end PowerPC,
but at a much smaller fraction of the area and the power. This allows more system
functions, including the global interconnect, to be integrated onto the same die.

L -
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The result is a highly replicable and efficient building block, allowing Blue Gene to
reach much larger processor counts more efficiently. Instead of using stand-alone
microprocessors or standard desktop boards as building blocks, Blue Gene uses
processor cores. There is no doubt that such an approach provides much greater
efficiency. Whether the market can support the cost of a customized design and
special software remains an open question.

In 2006, a Blue Gene processor at Lawrence Livermore with 32K processors held
a factor of 2.6 lead in Linpack performance over the third-place system, which
consisted of 20 SGI Altix 512-processor systems interconnected with Infiniband as
a cluster.

Blue Gene’s predecessor was an experimental machine, QCDOD, which pio-
neered the concept of a machine using a lower-power embedded microprocessor
and tightly integrated interconnect to drive down the cost and power consumption
of anode.

Looking Further

There is an almost unbounded amount of information on multiprocessors and
multicomputers: conferences, journal papers, and even books seem to appear faster
than any single person can absorb the ideas. No doubt many of these papers will go
unnoticed—not unlike the past. Most of the major architecture conferences con-
tain papers on multiprocessors. An annual conference, Supercomputing XY (where
X and Y are the last two digits of the year), brings together users, architects, soft-
ware developers, and vendors and publishes the proceedings in book, CD-ROM,
and online (see www.scXY.org) form. Two major journals, Journal of Parallel and
Distributed Computing and the IEEE Transactions on Parallel and Distributed Sys-
tems, contain papers on all aspects of parallel processing. Several books focusing
on parallel processing are included in the following references, with Culler, Singh,
and Gupta [1999] being the most recent, large-scale effort. For years, Eugene Miya
of NASA Ames has collected an online bibliography of parallel processing papers.
The bibliography, which now contains more than 35,000 entries, is available online
at liimwww.ira.uka.de/bibliography/Parallel/Eugene/index.html.

Asanovic, et al. [2006] recently surveyed the wide-ranging challenges for the
industry in this multicore challenge. That report may be a helpful in understanding
the depth of the various challenges.

In addition to documenting the discovery of concepts now used in practice,
these references also provide descriptions of many ideas that have been explored
and found wanting, as well as ideas whose time has just not yet come. Given the
move toward multicore and multiprocessors as the future of high-performance
computer architecture, we expect that many new approaches will be explored in
the years ahead. A few of them will manage to solve the hardware and software
problems that have been the key to using multiprocessing for the past 40 years!
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64 bit processors: Intel 64 —Skylake microarchitecture

Core i3 (6th Generation)

« Skylake (Core i3 6th Generation) — 14 nm process technology

o

O O O 0O O O

2 physical cores/4 threads

3-4 MB L3 cache

Introduced Q3'15

Socket 1151 LGA

2-channel DDR3L-1333/1600, DDR4-1866/2133
Integrated GPU Intel HD Graphics 530 (only i3-6098P have HD Graphics 510)
Variants

i3-6098P — 3.60 GHz

i3-6100T — 3.20 GHz

i3-6100 — 3.70 GHz

i3-6300T — 3.30 GHz

i3-6300 — 3.80 GHz

i3-6320 — 3.90 GHz

Core i5 (6th Generation)

« Skylake (Core i5 6th Generation) —14nm process technology

o

O O O O O O

4 physical cores/4 threads
6 MB L3 cache
Introduced Q3'15
Socket 1151 LGA
2-channel DDR3L-1333/1600, DDR4-1866/2133
Integrated GPU Intel HD Graphics 530
Variants

= i5-6400T — 2.20 GHz/2.80 GHz Turbo Boost
i5-6400 — 2.70 GHz/3.30 GHz Turbo Boost
i5-6500T — 2.50 GHz/3.10 GHz Turbo Boost
i5-6500 — 3.20 GHz/3.60 GHz Turbo Boost
i5-6600T — 2.70 GHz/3.50 GHz Turbo Boost
i5-6600 — 3.30 GHz/3.90 GHz Turbo Boost
i5-6600K — 3.50 GHz/3.90 GHz Turbo Boost

Core i7 (6th Generation)

« Skylake (Core i7 6th Generation) —14nm process technology

o

O O O O O O

4 physical cores/8 threads
8 MB L3 cache
Introduced Q3'15
Socket 1151 LGA
2-channel DDR3L-1333/1600, DDR4-1866/2133
Integrated GPU Intel HD Graphics 530
Variants
= i7-6700T — 2.80 GHz/3.60 GHz Turbo Boost
= i7-6700 — 3.40 GHz/4.00 GHz Turbo Boost
» [7-6700K — 4.00 GHz/4.20 GHz Turbo Boost
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$409 418 19 2 UHD 620 115() 8 15 032017
$409 418 18 40 UHD620 1150 8 15 032017
15-8350U s207 | 418 | u 3.6 UHD 620 1100 | 6 | 032017
582500 207 | 418 | 16 B UHD620 1100 | 6 is | ose0r

7th gene ratioin Cor.e JKaby Lak esSkylake (X-series Processors)/Apollo Lake (.cdit

Desktop- (et

Tia xim um GPU )
1 [TDP(WI o] sooltet | Rek-ase,

Model ' | pit=e-(UBD) + | Gores/Thr eads « | 8asef requency(Gz)  |Max turbofre-quency (GHz,) | GPU -

'
c lock rate (MHZ)

BM00CE $1933 181311 26 42 NIA NIA 165 LGA 00 2011C1
2000
19-1001)(.0. 51638 002 2.8 42 NIA NA 22.00 165 LGA:2000 0020 11' 1]
B-J940XJ 51393 14128 3. 43 NA NIA 19.25 65 LGA 0020 1311
( S1189 14 29 43 NA NA 16M 140 | LGA Q32017
2000
i9-7900X 5999 10120 33 43 NA NA 1315 140 | LGA:200
J
i7-7320X $59 1116 36 43 NA NA 11.03 140 | LGA 22017
2.Cff
i7-7&00X s389 12 35 40 NA NA 825 140 | toa 02 2017
i7-n40X., 89 418 43 45 NA NA 8 112 LGA Q12017
i7-n OCK 418 42 45 HDo:30 1 8 91 LGA 1151 | Q12017
U-Nw], $>12 18 36 42 HDo:30 ii .00 8 M LGA H-51| @i 2017
{TO00T g2 48 29 38 HDo:30 1 8 £ LGAn.5 | 0i207
i5-7 GAXL 5242 414 4.0 42 NA NIA 6 12 LGA20x | @izt
5241 414 38 42 HDo:30 1 L 91 LeaTis Q12017
i5J00.1 5224 414 35 a1 HDo:30 nw . M LGA 1161| i 2017
i5-7600TJ. 5224 414 28 3.1 HDo:30 1100 L4 3 LGA 1161| i 2017
5 e 414 34 3.8 HDo:30 105 M LGA1LS1 | Q1 2017
7500
i5-7500T 414 2.1 33 HDo:30 uoJ 6 35 LGA US51| @i207
iS7400., $1 414 3.0 35 HDo:30 1000 6 M LGA 1151| QI 201
i5-7400T SI87 414 24 3.0 HD630 1000 6 35 eatist | Q12017
il -7J.K SIp 214 42 NA HDo:30 ii 50 4 00 LGA H51| Qi 27
3-7320:1.- Sis7 214 4 NA HDo:30 ii .10 4 51 LGA H-51| i 2017
il 7300, . s147 214 40 NA HDo:30 1 4 5 LGA 1151 | Q12017
i.1-73.00T $147 214 35 NA HD630 ioJ 4 LGA 1151| @i 2017
il -7100 s1 7 214 39 NIA HDo:30 103 3 5 LGAHS [ Q1207
371007 $il7 214 3.4 NA HDo:30 1104 3 35 teanst | qi2017
i3-71"HE 5117 214 39 NA HDo:30 105 3 54 LGA 11 | 012017
3-7101TE Sl 1 214 34 NA HDo30 101 3 35 LGA1LS1 | Q12017
G.4820 $3:1 214 37 NA HDo:30 1100 3 5 LGA 1151 i 2017
GA4600 s12 214 3.6 NIA HD630 10J 3 5 LGA 1151] Q1 2017
G46:>DT 214 3.0 NA HD0:30 050 3 LGA 5 Q2017
G560 w4 214 35 NA HD6 10 050 3 54 ea Hst | qi2017
G4E6DT w4 214 29 NA HD610 1050 3 35 LGA 115 Q12017
==t $52 212 30 NA HD610 1010 2 51 LGAILSL ) 012017
542 212 29 NA HD6 10 1014 2 51 LGA H-51] Qi 2011 d
GJ9IOT $42 212 2.7 NA HD610 1000 2 LGA 1151) QI 2011 [ <




_ ) CPU a taximu,
rotret Pricetd-SBY restThresds o SFY-Torboctockrate-tGHz) P o [~CachrethvB TPt Retearse
clock rate(GHz)

-7920HQ<-| SI& 418 3. 4. HD830 00 8 45 Q1207
-7820HQ< S378 418 29 39 HD830 00 8 45 Q1207
-7820HK<- 418 29 3.9 HD830 00 8 45 Qi20i7
-7700HQ<-| 418 2.8 38 HD830 00 6 45 Qi20i7
-7e60U<- s415 24 25 25 Iris?hts640 00 4 5 Q20i7
-7600U<- S393 2/4 28 28 H0620 <O 4 5 032016
-7567U <- NIA 2/4 35 35 Iris?lus 6: <] 1<) 4 28 03 2016
-7560U<- 8415 24 2.4 24 I ris?lus 640 0! < 4 5 Qi20\7
-7500U<- S393 2/4 2.7 HD820 0O!<) 4 5 Qi20i7
-7Y75<- S$393 2/4 3 36 HO6i5 Ol<) 4 45 Qi20i7
i5-7440HQ<- S2l< 414 HD830 6 45 Qi20i7
i5-7300HQ<- s2i< 414 35 HD830 (XX) 6 45 Q1207
i5-7360U<- S304 2/4 23 23 Iris?lus640 (XX) 4 5 Q120\7
i5-7300U<- S28 2/4 26 2.6 H0620 00 3 5 Q120\7
i5-7287U<- NIA 2/4 33 33 Iris?hts6:<), 00 4 R Q20i7
i5-7267U<- NIA 2/4 3. 3. Iris?hts6:<)| 0l<) 4 28 Qi20i7
i5-7260U<- S304 2/4 2.2 2.2 Iris?hts640 g< 4 5 Qi20i7
i5-7200U<- S28 2/4 25 H0620 (XX) 3 5 03 2016
i5-7Y57 ™| 24 2 HO6 15 st< 4 45 Ql20\7
i5-7Y54 x 4 2 32 HI6 15 st< 4 45 Ql20\7
il-7 S225 2/4 3.0 NIA HD830 g< 3 3 Qi20i7
il-7 NIA 2/4 2.8 NIA Iris?hts6:<)| (XX) 3 28 Qi20i7
il- U<- NIA 2/4 2.7 NIA HD820 (XX) 3 5 Q2 20i7
il-7 S28 24 24 NIA H0620 (XX) 3 5 03 2016
S28 2/4 3.0 HO 615 900 4 4.5 Q2 2017

$28 2/4 26 HO 615 900 4 45 03 2016

N4200<- S16i 414 25 HO!<>5 700 2(t2 6 03 2016
4415U<- S$16 24 23 NIA HO 610 g< 2 5 Qi20i7
4415Y<- S$16 24 6 NIA HO6i5 8l<) 2 6 Q220i7
44 S16 24 5 NIA HO 615 8I<) 2 6 Ql 20\7
N3450<- s107 414 22 HO .00 6.<) 2 (2 6 03 2016
N3350. s$107 2/2 2.4 HO!.00 6<) 2 (2 6 03 2016
s107 2/2 2.2 NIA HO 610 900 2 5 Qi 20i7
$107 2/2 .8 NIA HO 610 900 2 5 Qi 20i7




AMD “ZEN” Core

For “Wintel” Machines
(i.e., Windows Operating Systems, Intel x86-FAMILY of Processors)

NOTE: AMD is a competitor of Intel, but adheres to the Machine
Instruction Set of the Intel x86-Processor Family

J Wunderlich PhD 2018 Lecture Notes

SOURCE: http://www.amd.com/en-us/innovations/software-technologies/zen-cpu

‘ ) “Excavator”
“Steamroller” Total

"Piledriver” Y 2 Efficiency

® Gain
L Ll

“Bulldozer"

BETTER CORE ENGINE BETTER CACHE SYSTEM LOWER POWER

Two threads per core Write back L1 cache Aggressive clock gating with
Branch mispredict improved Faster L2 cache multi-level regions

Better branch prediction with 2 Faster L3 cache Write back L1 cache
branches per BTB entry Faster Load to FPU: 7 vs. 9 cycles Large Op Cache

Large Op Cache Better L1 and L2 data prefetcher Stack Engine

Wider micro-op dispatch 6 vs. 4 Close to 2x the L1 and L2 bandwidth Move elimination

Larger Instruction Schedulers Total L3 bandwidth up 5x Power focus from project inception
Integer: 84 vs. 48 | FP: 96 vs. 60

Larger retire 8 ops vs. 4 ops
Quad issue FPU

Larger Retire Queue 192 vs. 128
Larger Load Queue 72 vs. 44
Larger Store Queue 44 vs. 32

Low Power Design Methodologies

40% IPC PERFORMANCE UPLIFT



https://en.wikipedia.org/wiki/X86
http://www.amd.com/en-us/innovations/software-technologies/zen-cpu

Pure Power

Gooland quiet processor operation usin gmachine intelligence, sensars, and optimized cimuit desi gin.

m Monitors temperature, peed and voltage
m Adaptive control manages reall ime for lower power usage
m Ongoing monitoring guidesother AMD SenseMI features

IPrecisionBoost

Fine-tu ned processor performance adjusted in real time fo meet the clockspeed deman.ds of your game or
app.

m Works in tande m with Pure Power contral! loop to opti mize performance
m On-t he-fily clock adj ustment without halts or qleue drains
m High precision tuning with 25MHz incr ements

Automati c extra perfor man ce boost forenthusiasts wiith premium syst ems an,d process,or cooling.

m Permits frequencie.s above and beyond ordinary Precision Boost limits
m crockspeed scares with cooling soluti on: air, water, and LN2
m Fullyaut omat ed; no user intervention r equired

NEURAL NETWORK PREDICTIION

/ .\ Buillt-in artificial intelligence that primes your processor to tackle
. . your app workload more efficiently.

1
0 1. Atrue artificial network inside every ™Zen" processor

2. Builds s a model of the decisions driven by software code
execution

Smart Prefetch 3. Anticipates future decisions, pre-load instructions, choose
the best path through the CPU

Leaming algorithms that predict and pre-road needed data for fast and respon sive com puting. ‘\\\
m Aintici pates the rocatio n of fut ure data, aocesses by application code \\\ / R \
m Sophisticat ed leamn ing algor it hms model and leam applicati on data axess pattems [ J ) “‘3‘

m Preifet ches vital dat ain o loca Icache so it 's ready forimmediat e use



JT Wunderlich PhD in the early 1990’s

Masters of Engineering, Engineering Science, Pennsyivania State University, Great Valley 1992
Track: Computer Hardware Design

Thesis: “A vector-register neural-network microprocessor design with on-chip leaming” (filed Patent Disclosure Document)
Advisor: Dr. Chuna Ho Chen (Unisys R&D. EE and CompEna Professor)

PhD Electrical Engineering, university of Delaware 1996
Research Group: Computer Engineering
Dissertation: “Optimal kinematic design of redundant and hyper-redundant manipulators for constrained workspaces”
Advisor: Dr.Charles Boncelet (ECE and CS Professor, ECE Chair, Bell labs, DOD), Initial PhD research developing a VLSI Neurocomputer

* Neurocomputer Design: University of Delaware and
Pennsylvania State University, including new mathematics for
machine learning, neural network microprocessor architectures,
and simulations for testing theories and architectures
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Machine Intelligence
Symbolic Al vs Neural Networks
L\ underdich-PhD.

SYMBOLIC Al uses special forms of computer programming to establish rules that lead to outcomes in a more efficient way; this includes using heuristics to prune the search space.
NEURAL NETWORKS use a collection of standardized decision nodes (Neurons), often organized into layers, to collectively generalize to solutions based on being trained with a data set
(for supervise learning). The network LEARNS by modifying the strength of the connections between NEURONS to satisfy all of the training set by making small incremental changes in
the connection weights over many iterations of reacting to the training set. Then, after leaming, the machine can not only rapidly react to input of the exemplars in the training set, but can
also react in a desired way to many variations of the inputs.

Example: suppose you have two parents deciding between getting a puppy or a kitten for their baby to play with. So we assign a binary variable to this decision as 0 for a puppy, and 1 for a
kitten.

Non- Machine Intelligence case: Parents agree that if either one of them really wants a certain kitten, the spouse will yield to that desire. This would be like a binary OR gate where the
parents assigned variables X and Y, would decide an outcome of 1 (for a kitten), So:
d

Mom Dax

X Y Decision

0 0 0 Puppy
1 1 1 Kitten
2 0 1 Kitten
1 1 1 Kitten

And the decision process, without pruning the search space, would look like this:
1) If XY = 00, then decision equals puppy
2) Else if XY =01, then decision equals kitten
3) Else if XY = 10, then decision equals kitten
4) Else if XY = 11, then decision equals kitten

Parents 20% confident in their choice:

Mom Dad

X Y  Decision

02 02 0 Puppy with XX% confidence
02 08 1 Kitten with XX% confidence
08 02 1 Kitten with XX% confidence
08 0.8 1 Kitten with XX% confidence
The de0|5|on process would look like what we discussed prewously foran “Expert System picking a toy for a
child: e QP 02020FY y

NEURAL NETWORK case 1: Using same thoughts of the parents as in the Non- Machine Intelligence case
LEAﬁlNING RATE =1 Stopping tolerance =0.1 130.5469 secs of CPU time

cBIAS &
0i=0a=X . 0o
- . 0.8
X ;. a- Wac =@ OJ Actual %
NN We Output S o7
O, % 06
TRAINING SET for w — z
LEARNING de y 05
PHASE: E‘ 0.4
X2 —= X Wepias D os
e BIAS : 0.2 o
& x
0.1 -
O 11input
Mom Dad dBIAS % 50 100 150 200 250 300 350
X Y Decision LEARNING EPOCHS
Exemplar#1 0 0 0 Puppy
Exemplar#2 0 1 1 Kitten
Exemplar # 1 0 1 Kitten LEA1RNING RATE =1 Stopping tolerance =0.1 192.875 secs of CPU time
Exemplar#4 1 1 1 Kitten

o
©

And the LEARNING process:
1) Initialize the inter-neuron connection weights to randomized values
2) Feed the neural network one examplar at a time, each time using the error between desired
output in actual output to change connection-weights between neurons
3) Repeat (2) until the output error is within reasonable proximity of desired output for every
exemplar (e.g., Decision<=0.1 for puppy, Decision>=0.9 for kitten). Each time you do this with
tEhg Oe(n;tll-:g training set is called an "EPOCH". The LEARNING PHASE can take thousands of

o
®

o
3

o
=3

o
o

o
IS

4) After leaming is done, the neural network will react instantly to not only binary inputs, but

2-2-1 NEURAL NETWORK OUTPUT

variations of the inputs. 0.3
NEURAL NETWORK case 2: Using same thoughts of the parents as in Symbolic Al case 02} | © 0202 INPUT
Mom Dad x 0.2 0.8 INPUT
XY Deciin | o oaazmen
Exemplar#1 02 02 0 Puppy —> .
Exemplar#2 0.2 0.8 1 Kitten 0 100 200 300 400 500 600

Bemgard? 88 88 1 KUN  imsTILL LEARNED, BUT T JUSTTOOK LONGER e ARNNGEPOCHS L


http://users.etown.edu/w/wunderjt/EGR_CS230/PACKET%2020F%20HANDOUT%20CogSci%20HCI%20Lecture%202018.pdf

But if we use the weights from the leamed “OR” of Neural Network Case 1, IT LEARNS MUCH FASTER:

LEA1RNING RATE =1 Stopping tolerance =0.1 73.9063 secs of CPU time
e

0.9 %
S

E 08
=
=}
O 07
z
O 0.6
% s © 0202 INPUT
i 3 x 0208 INPUT
e % 0802 INPUT
2 D © 0.8 0.8 INPUT
Wos
& 02 &
N

0.1

0
0 50 100 150 200 250
LEARNING EPOCHS

NEURAL NETWORK case 3: Neural Network Case 1 after leaming, instant result (no leamning needed) for any exemplar input in training set
NEURAL NETWORK case 4: Neural Network Case 1 after leaming, instant result (no leaming needed) for any exemplar input with a little bit of noise corrupting input (e.g., 5%)

NEURAL NETWORK case 5: For some strange reason, the parents only get a kitten if just one of them wants it, otherwise they get a puppy. This is an XOR function which is harder for a
Neural Network to leam because it is a “NONLINEAR SEPARABLE” problem -- think about the logic of what it is trying to solve; if gets no input as in Exemplar #1, nothing comes out, and
then if it gets input from either X or Y, it fires, but if both X and Y input 1, nothing comes out - this is counterintuitive — and the Neural Network thinks so too; so it must struggle to solve
this, and it therefore takes longer to leam.

Mom Dad
X Y  Decision
Exemplar#1 0 0 1 Puppy
Exemplar#2 0 1 2 Kitten
Exemplar#3 1 0 1 Kitten
Exemplar#4 1 1 0 Puppy

LEAI;!NING RATE =1 Stopping tolerance =0.1 739.0156 secs of CPU time

0.6 §

o
(3]

o
»

©
w

2-2-1 NEURAL NETWORK OUTPUT
o
N

o
-

1 1 1 1 Il

o

0 200 400 600 800 1000 1200 1400 )
LEARNING EPOCHS L 9))



NEURAL NETWORK case 6: For some strange reason, the parents only get a puppy if both of them, plus the neighbor, all either agree to get a puppy, or for some really odd reason all
want a kitten. This is also a NONLINEAR SEPARABLE problem. We need three inputs, and 1 output, and we choose to have three neurons in the input layer to better facilitate leaming.

A4 B, [ N - )
VoM Dad INetgnooT

X Y Z Decision

Exemplar#1 0 0 O 0 Puppy
Exemplar#2 0 0 1 1 Kitten
Exemplar#30 1 0 1 Kitten
Exemplar#4d 0 1 1 1 Kitten
Exemplar#51 0 0 1 Kitten
Exemplar#6 1 0 1 1 Kitten
Exemplar#71 1 0 1 Kitten
Exemplar#8 1 1 1 0 Puppy

LEA1RNING RATE =1 Stopping tolerance =0.1 959.375 secs of CPU time

0.9 ]
E 0.8 § l
l_
8 0.7 il
v 000 input
[0 001 input
06 1
% 010 input
I 011 input J
% 0.5 100 input
- i 101 input ]
&( 0.4 110 input
a 111 input |
o 0.3
:5 02 1
o
0171 1
O 1 1 1 1 1
0 200 400 600 800 1000 1200

LEARNING EPOCHS
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MATLAB CODE:

R

A 2-2-1 or 3-3-1 back-propagation Neural Network
by Joseph Wunderlich,Ph.D.

4/19/18:

Removed outdated "h=" handle, and input number, in Legend function
12/11/09:

Added disabling plotting for speed

Removed discontinued "flop(s)" function
12/10/09:

Created new file NN2 2009.m
Added 3-3-1 capability
3/29/04, fixed NN2.m:
WcBIAS=WcBIAS+dWcBIAS;
WABIAS=WcBIAS+dWcBIAS;
WeBIAS=WcBIAS+dWcBIAS;

Created original files "NN1.m" and "NN2.m" in 1990's

R R I R S R I R S



FHFRIK KA A A KKK KAk Ak K KkKkxx START TIMER AND INSTRUCTION COUNTER
startTIME=cputime;

%******************* PICK AN ARCHITECTURE Of 2,2,1 or 3,3,1 Kk hhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhhhhhkkkx
ARCHITECTURE=1; $"1" means 2-2-1, "2" means 3-3-1 Network Architecture

Qkkkkkkhkkkkkkhkkkkkkxkx 2-2_7 gnd 3-3-1 INPUT

ER R R e R

PLOTTING=1; $Turn plotting on "1" or off "O0" for speed
RATE=1; %$Learning Rate
EPOCHcountMAX=2000; $Stop 1f goal not reached after this many iterations
STOPtolerance=.1; $How close to get to asymptotes at 0 or 1
%$Training sets of exemplars for each architecture:
EXEMPLAR 221=[0.2 0.2 0; %inputl, input2, and desiredoutput exemplar #1
0.2 for exemplar #2
0.8 1; %inputl, input2, and desiredoutput
for
0.8 0.2 1; %inputl, input2, and desiredoutput exemplar #3
for
0.8 0.8 11; %inputl, input2, and desiredoutput exemplar #4
for
EXEMPLAR 331=[0 0 0 O; %inputl, 2,3 and desiredoutput for exemplar #1
00 1 1; %$inputl, 2,3 and desiredoutput for exemplar #2
010 1; %$inputl, 2,3 and desiredoutput for exemplar #3
01 11; %$inputl, 2,3 and desiredoutput for exemplar #4

if ARCHITECTURE-9L gb 15TART %%&%ﬁ@“@%@ Fesh rRRGHEPEETEBE exemplar #5
SRR AR E IR A A 22,3 lanV HEALEER RN for exemplar #6

****************ﬁ*fﬁﬁf**** & K K K Kk Kok ok, ﬁf**?f*****

input?, desitedoutput for exemplar #7
Wac=.5; Wad=.67q 0]1; %inputl, 2,3 and desiredoutput for exemplar #8
Wbc=.7; Wbd=.8;

Wce=.9; Wde=1;

WcBIAS=1; WABIAS=1; WeBIAS=1;

%Here's the learned weights for binary "OR" behavior. Try these with

$non-binary inputs to see Neural Network generalize an answer:
Wac=2.587599880586697; Wad=3.252993565762999;

Wbc=2.622851399549637; Wbd=3.263788576863788;

Wce=3.400823954387610; Wde=4.650702692016342;

WcBIAS=-1.450905811079590; WdABIAS=-1.774565860598957; WeBIAS=-3.521403729223980;

cBIAS=1; dBIAS=1; eBIAS=1;
Exemplarl OutputLAST=[.5 .5 .5]; %just to get it started
Exemplar2 OutputLAST=[.5 .5 .5];
Exemplar3 OutputLAST=[.5 .5 .5];
Exemplar4 OutputLAST=[.5 .5 .5];

EPOCHcount=0;

n=1;
%****************************************************************************************
* Kk kK

%************************************* 2,2,1 MAIN LOOP
hhkhkhkhhhhkhhkhhhhhkhkhkhkhhhkhkhkhkhhkhkhkhkhhhhkhhkhkhhhhxx

Sk khkhkkhkhhkhkhkhkhkhkhhkkkkhkhkkhkkhkkhkhkhhkkhkkhkkhkhkkkkkkkkkkkk ok k ok kkkkkkkkkkkkkkkokkkkhkkkkkxk

Kk kK
while ((EPOCHcount) < EPOCHcountMAX) &
((abs (Exemplarl OutputLAST (3)-EXEMPLAR 221 (1,3))> STOPtolerance) |
(abs (Exemplar2 OutputLAST (3)-EXEMPLAR 221(2,3))> STOPtolerance) |
(abs (Exemplar3 OutputLAST (3)-EXEMPLAR 221(3,3))> STOPtolerance) |
(abs (Exemplar4 OutputLAST (3)-EXEMPLAR 221 (4,3))> STOPtolerance))
EPOCHcount=EPOCHcount+1; //J
for i=1:4 [:
Oc=1/ (1+exp ( (- (cBIAS*WcBIAS)- EXEMPLAR 221 (i,1)*Wac - EXEMPLAR 221 (i,2)*Wbc )));




0d=1/ (1+exp ( (- (ABIAS*WABIAS) - EXEMPLAR 221 (i,1)*Wad - EXEMPLAR 221 (i,2)*Wbd )));
Oe=1/(l+exp ( (- (eBIAS*WeBIAS) - Oc*Wce - Od*Wde )));

1f i==
Exemplarl OutputLAST=[EXEMPLAR 221 (i, 1) EXEMPLAR 221(i,2) Oel;
if PLOTTING==
figure(l);
plot (EPOCHcount,Oe, 'bo") ;
hold on;
end;
elseif i==
Exemplar2 OutputLAST=[EXEMPLAR 221 (i,1) EXEMPLAR 221(i,2) Oe];
if PLOTTING==
figure(1l);
plot (EPOCHcount,Oe, 'bx") ;
hold on;
end;
elseif i==
Exemplar3ioutputLAST=[EXEMPLAR7221(i,l) EXEMPLAR7221(i,2) Oel;
if PLOTTING==
figure (1) ;
plot (EPOCHcount,Oe, "rx'");
hold on;
end;
else
Exemplar470utputLAST=[EXEMPLAR7221(i,l) EXEMPLAR7221(i,2) Oel;
if PLOTTING==
figure(1l);
plot (EPOCHcount,Oe, 'ro'");
hold on;
end;
end;

Exemplars OutputLAST=[EPOCHcount/10000 Exemplarl OutputLAST;
EPOCHcount /10000 Exemplar2 OutputLAST;
EPOCHcount /10000 Exemplar3 OutputLAST;
EPOCHcount /10000 Exemplar4 OutputLAST]

error=EXEMPLAR 221 (i, 3)-0e;
errorprop=error*0Oe* (1-0e) ;

dWeBIAS=RATE*errorprop*eBIAS;
dWce= RATE*errorprop*Oc;
dWde= RATE*errorprop*0d;

dWcBIAS=RATE*Oc* (1-0Oc) * (errorprop*Wce) *cBIAS;

dWac= RATE*Oc* (1-Oc) * (errorprop*Wce) *EXEMPLAR 221 (i,1);
dWbc= RATE*Oc* (1-0Oc) * (errorprop*Wce) *EXEMPLAR 221 (i,2);
dWABIAS=RATE*Od* (1-0d) * (errorprop*Wde) *dBIAS;

dWad= RATE*Od* (1-0d) * (errorprop*Wde) *EXEMPLAR 221 (i,1);
dwWbd= RATE*Od* (1-0d) * (errorprop*Wde) *EXEMPLAR 221 (i,2);

Wac=Wac+dWac;

Wad=Wad+dWad;

Wbc=Wbc+dWbc;

Wod=Wbd+dWbd;

Wce=Wce+dWce;

Wde=Wde+dWde;

WcBIAS=WcBIAS+dWcBIAS;

WABIAS=WdABIAS+dWdBIAS;

WeBIAS=WeBIAS+dWeBIAS;

Wdisplay=[Wac Wad Wbc Wbd Wce Wde WcBIAS WABIAS WeBIAS];



n=n+1;

end;
end;

EPOCHcount
endTIME=cputime-startTIME

if PLOTTING==

figure (1) ; %open figure window #1
% % axis([-120 335 -50 3001); %define x and y axis for figure window #1
title (['LEARNING RATE =',num2str (RATE), ' Stopping tolerance =

', num2str (STOPtolerance), ' L.
num2str (endTIME), ' secs of CPU time ']);
xlabel ('LEARNING EPOCHS') ;
ylabel ('2-2-1 NEURAL NETWORK OUTPUT') ;
legend('00 input','0l input','10 input', 'll input', 'Location', 'southwest');
hold on;
end;

Sk khkkhkkhkhhkhkhkkhkhkhkhhkkkkhkhkkhkkhkhkhkhhkkhkkhkhkhkkkkkkhkkhkkk ok kkkhkkhkkkkkkkkkkkkokkkkkkkkkkxk
Sk khkkhkkhkhkhkhkhkxkhkhkkhkhkkhkxhkkhkkkkkkhkkkkkkkkxx*x END 2-2-1 MAIN LOOP

Sk khkkhkkhhkhhkhhkhkhkhkhhkkhkhkhhkhkhkhkhkhkhhkkhkhkkhkhhkkkkkkhkkhkhkkhkkkkhkkhkkkkkkkkkhkkokkkkhkkkkkxk

Sk khkkhkkhkkhkkhkhkkhxkhkhkkhkhkhkkhkxkkhkkhkkkkhkxkkkkkkxx*x END 2-2—-1 ARCITECTURE

B R L Y

Sk khkhkhkhhkhhkhkhkhkhhkkkkhkhkkhkhkkhkhkhhkkhkhkhkhkkkkkkhkkhkkkkkkkhkkhkkkkkkkkkkkkokkkkkkkkkkxk

Sk khkkhkkhkhhkhhkhkhkhkhhkkkkhkhkkhkhkhkhkhhkkhkkhkhkhkkkkkkkkkkkk ok khkkkkkkkkkkkkkkokkkkkkkkkkxk

Sk kkkhkkhkhkkhkhkhkhkhkkhkkhkxkhkkhkhkkhkkhkxkkxhkkkkx*x* BEGIN 3-3-1 ARCITECTURE

B R L Y

elseif ARCHITECTURE== % START IMPLIMENTING 3-3-1 ARCHITECTURE
%******************************************* 3,3,1 INITIALIZATION KAk Ak hkhkhkhkhkhkhhkhkhkhkhkhkkkkxkk
$Weight Values
%A,B,C are input layer neurons
%$D,E,F are hidden layer neurons
%G is output layer neuron
Wad= .4; Wae= .45; Waf= .5;
Wbd= .55; Wbe= .6; Wbf= .65;
Wed= .7; Wce= .75; Wcf= .8;
Wdg= .85; TWeg= .9; Wfg= .63;

%$Bias values (MAY BE CHANGED BASED ON a concurrent SITUATION)
dBIAS= 1; WABIAS=1;
eBIAS= 1; WeBIAS=1;
fBIAS= 1; WEBIAS=1;
gBIAS= 1; WgBIAS=1;

; %just to get it started

Exemplarl OutputLAST
Exemplar2 OutputLAST
Exemplar3 OutputLAST
Exemplard4 OutputLAST
Exemplar5 OutputLAST
Exemplar6 OutputLAST
Exemplar7_OutputLAST
Exemplar8 OutputLAST
ERPCHcount=0;

Sk khkhkkhkhhkhhkhkhkhkhhkkhkhkhhkhkhkkhkhkhkhhkkhkkhkhkhkkkkkkhkkhkhkkhk ok khkkhkkkkkkkkkhkkokkkkkkkkkkxk

[CNC, NG, BN, BN, B G B C B
(SN BN, BN, NG B G RN C R
[S2N G NG NG BN C G O N )]

[
[
[
[.
[
[
[
[

ok ok ok ok kK k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK 3-3-1 MAIN LOOP KAk kKA KA Ak AA AR KA R KKK KKK KKK

Sk khkhkkhkhhkhhkhkhkhkhhkkhkhkhhkhkhkkhkhkhkhhkkhkkhkhkhhkkkkkkhkkhkhkkhkkkkhkkhkkkkkkkkkhkkokkkkhkkkxkxk




while ( (EPOCHcount) < EPOCHcountMAX) &

((abs (Exemplarl OutputLAST (4)-EXEMPLAR 331(1,4))> STOPtolerance) |
(abs (Exemplar2 OutputLAST (4) -EXEMPLAR 331(2,4))> STOPtolerance) |
(abs (Exemplar3 OutputLAST (4) -EXEMPLAR 331(3,4))> STOPtolerance) |
(abs (Exemplar4 OutputLAST (4)-EXEMPLAR 331(4,4))> STOPtolerance) |
(abs (Exemplar5 OutputLAST (4)-EXEMPLAR 331(5,4))> STOPtolerance) |
(abs (Exemplar6 OutputLAST (4) -EXEMPLAR 331(6,4))> STOPtolerance) |
(abs (Exemplar7 OutputLAST (4)-EXEMPLAR 331(7,4))> STOPtolerance) |
(abs (Exemplar8 OutputLAST (4)-EXEMPLAR 331(8,4))> STOPtolerance))
EPOCHcount=EPOCHcount+1;
for i=1:8
0d=1/ (1+exp ( (- (ABIAS*WABIAS) - EXEMPLAR7331(i,1)*Wad - EXEMPLAR7331(1,2)*Wbd -
EXEMPLAR 331 (i,3)*Wcd )));
Oe=1/ (1+exp ( (- (eBIAS*WeBIAS) - EXEMPLAR7331(i,1)*Wae - EXEMPLAR7331(1,2)*Wbe -
EXEMPLAR 331 (1i,3)*Wce )));
0f=1/ (l+exp ( (- (fBIAS*WfBIAS) - EXEMPLAR7331(i,1)*Waf - EXEMPLAR7331(1,2)*be -
EXEMPLAR 331 (i,3)*Wcf )));
0g=1/ (l+exp ( (- (gBIAS*WgBIAS) - 0d*Wdg - Oe*Weg - Of*Wfg )));
% 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'gray',
'lightBlue', 'orange', 'darkGreen'
if i==

ExemplarliOutputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(1,2) EXEMPLAR7331(i,3) ogl;
if PLOTTING==
figure(1l);
plot (EPOCHcount,Og, 'redo") ;
hold on;
end;
elseif i==
Exemplar270utputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(1,2) EXEMPLAR7331(1,3) Ogl;
if PLOTTING==
figure (1) ;
plot (EPOCHcount,Og, 'black.");
hold on;
end;
elseif i==
Exemplar370utputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(i,2) EXEMPLAR7331(1,3) ogl;
if PLOTTING==
figure(1l);
plot (EPOCHcount,Og, 'green. ") ;
hold on;
end;
elseif i==
Exemplar470utputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(1,2) EXEMPLAR7331(i,3) Oogl;
if PLOTTING==
figure(1l);
plot (EPOCHcount,Og, 'blue. ") ;
hold on;
end;
elseif i==
Exemplar570utputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(i,2) EXEMPLAR7331(1,3) ogl;
if PLOTTING==
figure(1l);
plot (EPOCHcount,Og, 'cyan. ") ;
hold on;
end;
elseif i==
Exemplar670utputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(1,2) EXEMPLAR7331(i,3) Oogl;
if PLOTTING==
figure(l);
plot (EPOCHcount, Og, 'magenta.');
hold on;



end;
elseif i==

Exemplar7 OutputLAST=[EXEMPLAR 331 (i,1) EXEMPLAR 331(i,2) EXEMPLAR 331 (i, 3)

if PLOTTING==
figure(1l);
plot (EPOCHcount,Og, 'yellow. ") ;

hold on;
end;
else
ExemplarSiOutputLAST=[EXEMPLAR7331(i,l) EXEMPLAR7331(1,2)
0gl;
if PLOTTING==1
figure(l);
plot (EPOCHcount,Og, 'blacko") ;
hold on;
end;
end;

Exemplars OutputLAST=[EPOCHcount/10000 Exemplarl OutputLAST;
EPOCHcount/10000 Exemplar2 OutputLAST;
EPOCHcount/10000 Exemplar3 OutputLAST;
EPOCHcount/10000 Exemplar4 OutputLAST;
EPOCHcount/10000 Exemplar5 OutputLAST;
EPOCHcount/10000 Exemplar6 OutputLAST;
EPOCHcount/10000 Exemplar7 OutputLAST;
EPOCHcount/10000 Exemplar8 OutputLAST]

error=EXEMPLAR 331 (i,4)-0g;
errorprop=error*0Og* (1-0g) ;

dWgBIAS=RATE*errorprop*gBIAS;

dwdg= RATE*errorprop*0d;
dWeg= RATE*errorprop*Oe;
dwfg= RATE*errorprop*Of;

dWABIAS=RATE*Od* (1-0d) * (errorprop*Wdg) *dBIAS;

dWad= RATE*Od* (1-0d) * (errorprop*Wdg) *EXEMPLAR 331 (i, 1);
dWbd= RATE*Od* (1-0d) * (errorprop*Wdg) *EXEMPLAR 331 (i, 2);
dWcd= RATE*Od* (1-0d) * (errorprop*Wdg) *EXEMPLAR 331 (i, 3);

dWeBIAS=RATE*Oe* (1-0Oe) * (errorprop*Weqg) *eBIAS;

dWae= RATE*Oe* (1-Oe) * (errorprop*Weg) *EXEMPLAR 331 (i,1);
dWbe= RATE*Oe* (1-Oe) * (errorprop*Weg) *EXEMPLAR 331 (i,2);
dWce= RATE*Oe* (1-Oe) * (errorprop*Weg) *EXEMPLAR 331 (i, 3);

dWEBIAS=RATE*Of* (1-0f) * (errorprop*Wfg) *£BIAS;

dWaf= RATE*Of* (1-0f) * (errorprop*Wfg) *EXEMPLAR 331 (i,1);
dWbf= RATE*Of* (1-0f) * (errorprop*Wfg) *EXEMPLAR 331 (i,2);
dWcf= RATE*Of* (1-0f) * (errorprop*Wfg) *EXEMPLAR 331 (i, 3);

Wad=Wad+dWad; Wbd=Wbd+dWbd; Wcd=Wcd+dWcd;
Wae=Wae+dWae; Wbe=Wbe+dWbe; Wce=Wce+dWce;
Waf=Waf+dWaf; Wbf=Wbf+dWbf; Wcf=Wcf+dWcf;

Wdg=Wdg+dWdg; Weg=Weg+dWeg; Wig=Wfg+dWfg;

WABIAS=WABIAS+dWABIAS;
WeBIAS=WeBIAS+dWeBIAS;
WEBIAS=WfBIAS+dWfBIAS;
WgBIAS=WgBIAS+dWgBIAS;

EXEMPLAR 331 (i, 3)

Ogl;



Wdisplay=[Wad Wbd Wcd Wae Wbe Wce Waf Wbf Wcf Wdg Weg Wfg WABIAS WeBIAS WEBIAS
WgBIAS];

n=n+1;

end;
end;

EPOCHcount
endTIME=cputime-startTIME

if PLOTTING==

figure (1) ; %open figure window #1
% axis([-120 335 =50 300]); $define x and y axis for figure window #1

title (['LEARNING RATE =',num2str (RATE), ' Stopping tolerance =

',num2str (STOPtolerance), ' L.
num2str (endTIME), ' secs of CPU time ']);

xlabel ('LEARNING EPOCHS') ;

ylabel ('3-3-1 NEURAL NETWORK OUTPUT') ;

legend('000 input', '001 input', '010 input','01ll input', '100 input','101 input', '110
input', '111 input', 'Location', 'southwest');

hold on;

end;
%*~k**************************~k~k*****~k****************************************************

Sk khkkhkkhkhkhkhkhkhkhkhkkkkhkkhkkhkkkkxhkkhkkkkxx*x END 3-3-1 MAIN LOOP **kkkkkkkkkkhkkhkkkkhkkhkkkkkkx

Sk khkhkkhkhhkhkhkhkhkhkhhkkkkhkhkkhkkhkkhkhkhhkkhkkhkkhkhkkkkkkkkkkkk ok k ok kkkkkkkkkkkkkkkokkkkhkkkkkxk

Sk khkkhkkhkhkkhkkhkhkhkhkhkkxhkkhkkhkkkkhkxkhkkkkkkxx*x END 3-3-1 ARCITECTURE **** %k kkkkkkkkkkkkhkkkkkkxk

Sk khkkhkhkhhkhkhkkhkhkhkhhkkkkhkhkkhkkhkkhkhkhhkkhkkhkkhkhkkkkkkkkkkk ok k ok kkkkkkkkkkkkkkkokkkkkkkkkkxk
Kk kKA KAk KA h kKK KKKk K

end;




In 2020 you can you do deep learning and neural networks
using the parallel processing capabilities of graphics cards
on simple personal computers! .... Using “CUDA”



A11 GRAPHICS CARDS, Historical Perspective
. (edited by J Wunderlich PhD in 2020)

Graphics Pipeline Evolution

3D graphics pipeline hardware evolved from the large expensive systems of the early 1980s to small
workstations and then to PC accelerators in the 1990s, to $X 000 graphics cards of the 2020’s During this
period, three major transitions occurred:

1. Performance-leading graphics subsystems PRICE changed from $50,000 in 1980’s down to
$200 in 1990’s, then up to $X,0000 in 2020’s.

2. PERFORMANCE increased from 50 million PIXELS PER SECOND in 1980’s to 1 billion
pixels per second in 1990”s and from 100,000 VERTICES PER SECOND to 10 million
vertices per second in the 1990’s. In the 2020’s performance is measured more in FRAMES
PER SECOND (FPS)

3. Hardware RENDERING evolved from WIREFRAME to FILLED POLYGONS, to FULL-
SCENE TEXTURE MAPPING

Fixed-Function Graphics Pipelines

Throughout the early evolution, graphics hardware was configurable, but not programmable by the
application developer. With each generation, incremental improvements were offered. But developers were
growing more sophisticated and asking for more new features than could be reasonably offered as built-in
fixed functions. The NVIDIA GeForce 3, described by Lindholm, et al. [2001], took the first step toward true
general shader programmability. It exposed to the application developer what had been the private internal
instruction set of the floating-point vertex engine. This coincided with the release of Microsoft’s DirectX 8
and OpenGL’s vertex shader extensions. Later GPUs, at the time of DirectX 9, extended general
programmability and floating point capability to the pixel fragment stage, and made texture available at the
vertex stage. The ATI Radeon 9700, introduced in 2002, featured a programmable 24-bit floating-point pixel
fragment processor programmed with DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point
pixel processors. This was part of a general trend toward unifying the functionality of the different stages, at
least as far as the application programmer was concerned. NVIDIA’s GeForce 6800 and 7800 series were built
with separate processor designs and separate hardware dedicated to the vertex and to the fragment processing.
The XBox 360 introduced an early unified processor GPU in 2005, allowing vertex and pixel shaders to
execute on the sameprocessor.

) I( “).II
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Evolution of Programmable Real-Time Graphics

Graphics architecture has evolved from a simple pipline for drawing wireframe diagrams to a highly
parallel design consisting of several deep parallel pipelines capable of rendering complex interactive
imagery that appears three-dimensional. Concurrently, many of the calculations involved became far
more sophisticated and userprogrammable.

In these GRAPHICS PIPELINES in GPU (Graphics Processing Unit, on Graphics card, or
“Integrated” on Motherboard)), certain stages do a great deal of floating-point arithmetic on completely
independent data, such as transforming the position of triangle vertexes or generating pixel colors. This
data independence is a key difference between GPUs and CPUs. A single frame, rendered in 1/60th of a
second, might have 1 million triangles and 6 million pixels. The opportunity to use hardware parallelism
to exploit this data independence istremendous.

The specific functions executed at a few graphics pipeline stages vary with rendering algorithms and
have evolved to be programmable. Vertex programs map the position of triangle vertices on to the screen,
altering their position, color, or orientation. Typically a vertex shader thread inputs a floating-point (X, y,
z, W) vertex position and computes a floating-point (X, y, z) screen position. Geometry programs operate
on primitives defined by multiple vertices, changing them or generating additional primitives. Pixel
fragment shaders each “shade” one pixel, computing a floating-point red, green, blue, alpha (RGBA) color
contribution to the rendered image at its pixel sample (x, y) image position. For all three types of
graphics shaders, program instances can be run in parallel, because each works on independent data,
produces independent results, and has no side effects.

Between these programmable graphics pipeline stages are dozens of fixed- function stages which
perform well-defined tasks far more efficiently than a programmable processor could and which would
benefit far less from program- mability. For example, between the geometry processing stage and the
pixel processing stage is a “rasterizer,” a complex state machine that determines exactly which pixels (and
portions thereof) lie within each geometric primitive’s bound- aries. Together, the mix of programmable
and fixed-function stages is engineered to balance extreme performance with user control over the
rendering algorithms. Common rendering algorithms perform a single pass over input primitives and
access other memory resources in a highly coherent manner; these algorithms pro- vide excellent
bandwidth utilization and are largely insensitive to memory latency. Combined with a pixel shader
workload that is usually compute-limited, these characteristics have guided GPUs along a different
evolutionary path than CPUs. Whereas CPU die area is dominated by cache memory, GPUs are
dominated by floating-point datapath and fixed-function logic. GPU memory interfaces empha- size
bandwidth over latency (since latency can be readily hidden by a high thread count); indeed, bandwidth
is typically many times higher than a CPU, exceeding 100 GB/second in some cases. The far-higher
number of fine-grained lightweight threads effectively exploits the rich parallelismavailable.
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Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable
graphics stages are mapped to an array of unified processors; the logical graphics
pipeline is physically a recirculating path that visits these processors three times,
with much fixed-function graphics logic between visits. Since different rendering
algorithms present wildly different loads among the three programmable stages,
this unification provides processor load balancing.

Unified Graphics and Computing Processors

By the DirectX 10 generation, the functionality of vertex and pixel fragment shaders
was to be made identical to the programmer, and in fact a new logical stage was
introduced, the geometry shader, to process all the vertices of a primitive rather
than vertices in isolation. The GeForce 8800 was designed with DirectX 10 in mind.
Developers were coming up with more sophisticated shading algorithms, and this
motivated a sharp increase in the available shader operation rate, particularly
floating-point operations. NVIDIA chose to pursue a processor design with higher
operating frequency than standard-cell methodologies had allowed to deliver the
desired operation throughput as area-efficiently as possible. High-clock-speed
design requires substantially more engineering effort, and this favored designing
one processor, rather than two (or three, given the new geometry stage). It became
worthwhile to take on the engineering challenges of a unified processor (load
balancing and recirculation of a logical pipeline onto threads of the processor
array) to get the benefits of one processordesign.

GPGPU: an Intermediate Step

As DirectX 9—capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9 GPUs had been designed only to match
the features required by the graphics APIL To access the computational resources, a
programmer had to cast their problem into native graphics operations. For example,
to run many simultaneous instances of a pixel shader, a triangle had to be issued to
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did
not have the means to perform arbitrary scatter operations to memory. The only
way to write a result to memory was to emit it as a pixel color value, and configure
the framebuffer operation stage to write (or blend, if desired) the result to a two-
dimensional framebuffer. Furthermore, the only way to get a result from one pass
of computation to the next was to write all parallel results to a pixel framebuffer,
then use that framebuffer as a texture map as input to the pixel fragment shader of
the next stage of the computation. Mapping general computations to a GPU in this
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful
of useful applications with painstaking efforts. This field was called “GPGPU” for
general purpose computing on GPUs.
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GPU Computing

While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its
potential usefulness would be much greater if programmers could think of the GPU
as a processor. NVIDIA selected a programming approach in which programmers
would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a high-
efficiency floating-point and integer processor that could run a variety of simul-
taneous workloads to support the logical graphics pipeline. This processor was
designed to take advantage of the common case of groups of threads executing the
same code path. NVIDIA added memory load and store instructions with integer
byte addressing to support the requirements of compiled C programs. It
introduced the thread block (cooperative thread array), grid of thread blocks, and
barrier synchronization to dispatch and manage highly parallel computing work.
Atomic memory operations were added. NVIDIA developed the CUDA C/C++
compiler, libraries, and runtime software to enable programmers to readily
access the new data-parallel computation model and develop applications.

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horsepower by
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. There was one option—the
VGA controller. As 3D-capable accelerators appeared, the market had room for a
range of offerings. 3dfx introduced multiboard scaling with the original SLI (Scan
Line Interleave) on their Voodoo2, which held the performance crown for its time
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), first
by speed binning and packaging, then with separate chip designs (GeForce 2 GTS &
GeForce 2 MX). At present, for a given architecture generation, four or five separate
GPU chip designs are needed to cover the range of desktop PC performance and
price points. In addition, there are separate segments in notebook and workstation
systems. After acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in
2004, starting with GeForce 6800—providing multi-GPU scalability transparently
to the programmer and to the user. Functional behavior is identical across the
scaling range; one application will run unchanged on any implementation of an
architectural family.

CPUs are scaling to higher transistor counts by increasing the number of
constant-performance cores on a die, rather than increasing the performance of a
single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to find fourfold to
eightfold task parallelism to fully utilize these processors, and applications using

task parallelism must be rewritten frequently to target each successive doubling [
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of core count. In contrast, the highly multithreaded GPU encourages the use of
many-fold data parallelism and thread parallelism, which readily scales to thousands
of parallel threads on many processors. The GPU scalable parallel programming
model for graphics and parallel computing is designed for transparent and
portable scalability. A graphics program or CUDA program is written once and
runs on a GPU with any number of processors. As shown in Section A.3, a CUDA
programmer explicitly states both fine-grained and coarse-grained parallelism in
a thread program by decomposing the problem into grids of thread blocks—the
same program will run efficiently on GPUs or CPUs of any size in current and
future generations as well.

Recent Developments

Academic and industrial work on applications using CUDA has produced
hundreds of examples of successful CUDA programs. Many of these programs run
the application tens or hundreds of times faster than multicore CPUs are capable
of running them. Examples include n-body simulation, molecular modeling,
computational finance, and oil and gas exploration data processing. Although
many of these use single precision floating-point arithmetic, some problems require
double precision. The recent arrival of double precision floating point in GPUs
enables an even broader range of applications to benefit from GPU acceleration.

For a comprehensive list and examples of current developments in
applications that are accelerated by GPUs, visit CUDAZone:
https://developer.nvidia.com/cuda-toolkit w.nvidia.com/CUDA.

Trends

Naturally, the number of processor cores will continue to increase in proportion
to increases in available transistors as silicon processes improve. In addition, GPUs
will continue to enjoy vigorous architectural evolution. Despite their demonstrated
high performance on data-parallel applications, GPU core processors are still of
relatively simple design. More aggressive techniques will be introduced with each
successive architecture to increase the actual utilization of the calculating units.
Because scalable parallel computing on GPUs is a new field, novel applications are
rapidly being created. By studying them, GPU designers will discover and
implement new machine optimizations. In 2020, GPU’s have over 2000 CUDA
CORES
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