
“PROCESSORS” and multi-processors
Excerpt from Hennessey Computer Architecture book; edits by JT Wunderlich PhD

Plus Dr W’s IBM Research & Development:

JT Wunderlich PhD

7.14 Historical Perspective and Further
Reading

There is a tremendous amount of history in multiprocessors; in this section we
divide our discussion by both time period and architecture. Westart with the SIMD
approach and the Illiac IV. We then turn to a short discussion of some other early
experimental multiprocessors and progress to a discussion of some of the great
debates in parallel processing. Next we discuss the historical roots of the present
multiprocessors and conclude by discussing recent advances.

SIMD Computers: Attractive Idea, Many Attempts, No
Lasting Successes

The cost of a generalmultiprocessor is, however, veryhigh and further designoptions
were considered which would decrease the cost without seriously degrading the
power or efficiency of the system. The options consist of recentralizing one of the
three major components. . . . Centralizing the [control unit] gives rise to the basic
organizationof [an] . . . arrayprocessor suchas the Illiac IV.

Bouknight, et al.[1972]
The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that
multiprocessor, as in more recent SIMD multiprocessors, is to have a single instruc-
tion that operates on many data items at once, using many functional units (see
Figure 7.14.1).

Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. Actual performance was at best 15 MFLOPS, versus initial predic-
tions of 1000 MFLOPS for the full system [Hord, 1982]. Delivered to NASA Ames
Research in 1972, the computer required three more years of engineering before it
was usable.

These events slowed investigation of SIMD, with Danny Hillis [1985] resuscitat-
ing this style in the Connection Machine, which had 65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and
address calculations that do not need parallel operation. The SIMD instructions
are broadcast to all the execution units, each of which has its own set of registers.
For flexibility, individual execution units can be disabled during an SIMD instruc-
tion. In addition, massively parallel SIMD multiprocessors rely on interconnection
or communication networks to exchange databetween processing elements.

“PROCESSORS”

Excerpt from Hennessey Computer Architecture book; edits by JT Wunderlich PhD

SIMD=Single

Instruction,

Multiple Data

7.14-2 7.14 Historical Perspective and Further Reading

FIGURE 7.14.1 The Illiac IV control unit followed by its 64 processing elements. It was
perhaps the most infamous of supercomputers. The project started in 1965 and ran its first real application in
1976. The 64 processors used a 13-MHz clock, and their combined main memory size was 1 MB: 64 ´ 16 KB.
The Illiac IV was the first machine to teach us that software for parallel machines dominates hardware issues.
Photo courtesy of NASAAmes Research Center.

SIMDworks best in dealing with arrays in for loops. Hence, to have the oppor-
tunity for massive parallelism in SIMD, there must be massive amounts of data, or
data parallelism. SIMD is at its weakest in case statements, in which each execution
unit must perform a different operation on its data, depending on what data it
has. The execution units with the wrong data are disabled so that the proper units
can continue. Such situations essentially run at 1/nth performance, where n is the
number of cases.
The basic tradeoff in SIMD multiprocessors is performance of a processor

versus number of processors. Recent multiprocessors emphasize a large degree of
parallelism over performance of the individual processors. The Connection
Multiprocessor 2, for example, offered 65,536 single-bit-wide processors, while the
Illiac IVhad 64 64-bit processors.

7.14 Historical Perspective and Further Reading 7.14-3

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMD model has once again been put to bed as a general-purpose
multiprocessor architecture, for two main reasons. First, it is too inflexible. A
number of important problems cannot use such a style of multiprocessor, and the
architecture does not scale down in a competitive fashion; that is, small-scale SIMD
multiprocessors often have worse cost performance than that of the alternatives.
Second, SIMD cannot take advantage of the tremendous performance and cost
advantages of microprocessor technology. Instead of leveraging this low-cost tech-
nology, designers of SIMDmultiprocessors must build custom processors for their
multiprocessors.
Although SIMD computers have departed from the scene as general-purpose

alternatives, this style of architecture will continue to have a role in special-purpose
designs. Many special-purpose tasks are highly data parallel and require a limited
set of functional units. Thus, designers can build in support for certain operations,
as well as hardwired interconnection paths among functional units. Such organiza-
tions are often called array processors, and they are useful for tasks like image and
signal processing.

Multimedia Extensions as SIMD Extensions to
Instruction Sets
Many recent architectures have laid claim to being the first to offer multimedia
extensions, in which a set of new instructions takes advantage of a single wide
ALU that can be partitioned so that it will act as several narrower ALUs operating
in parallel. It’s unlikely that any appeared before 1957, however, when the Lincoln
Lab’s TX-2 computer offered instructions that operated on the ALU as either one
36-bit operation, two 18-bit operations, or four 9-bit operations. Ivan Sutherland,
considered the Father of Computer Graphics, built his historic Sketchpad system
on the TX-2. Sketchpad did in fact take advantage of these SIMD instructions,
despite TX-2 appearing before invention of the termSIMD.

Other Early Experiments
It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability.
Two of the best-documented multiprocessor projects were undertaken in the

1970s at CarnegieMellonUniversity. The first of thesewasC.mmp, which consisted
of 16 PDP-11s connected by a crossbar switch to 16 memory units. It was among
the first multiprocessors with more than a few processors, and it had a shared
memory programming model. Much of the focus of the research in the C.mmp
project was on software, especially in the OS area.Alater multiprocessor, Cm*,was

MIMD=Multiple
Instruction,
Multiple Data

7.14-4 7.14 Historical Perspective and Further Reading

a cluster-based multiprocessor with a distributed memory and a nonuniform access
time. The absence of caches and a long remote access latency made data placement
critical. Many of the ideas in these multiprocessors would be reused in the 1980s,
when the microprocessor made it much cheaper to build multiprocessors.

Great Debates in Parallel Processing
The turning away from the conventional organization came in the middle 1960s,
when the law of diminishing returns began to take effect in the effort to increase the
operational speedof a computer. . . . Electroniccircuits are ultimately limited in their
speed of operation by the speed of light . . . and many of the circuits were already
operating in the nanosecond range.

W. Jack Bouknight, et al.
The Illiac IV System[1972]

. . . sequential computers are approaching a fundamental physical limit on their
potential computational power.Sucha limit is the speedof light . . .

Angel L.DeCegama
The Technology of Parallel Processing, Volume I[1989]

. . . today’s multiprocessors . . . are nearing an impasse as technologies approach the
speed of light. Even if the components of a sequential processor could be made to
work this fast, the best that could be expected is nomore than a fewmillion instruc-
tions persecond.

David Mitchell
The Transputer: The Time Is Now[1989]

The quotes above give the classic arguments for abandoning the current form of
computing, and Amdahl [1967] gave the classic reply in support of continued
focus on the IBM 360 architecture. Arguments for the advantages of parallel
execution can be traced back to the 19th century [Menabrea, 1842]! Despite this,
the effectiveness of the multiprocessor in reducing the latency of individual
important programs is still being explored. Aside from these debates about the
advantages and limitations of parallelism, several hot debates have focused on how
to build multiprocessors.

From today’s perspective, it is clear that the speed of light was not the brick wall;
it was, instead, the power consumption of CMOS as the clock rates increased.

It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions
for 1995. We included these predictions in the first edition of the book, when the
outcome was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first was that a computer capable of sustaining a teraFLOPS—one million
MFLOPS—would be constructed by 1995, using either a multicomputer with 4K
to 32K nodes or a Connection Multiprocessor with several million processing

7.14 Historical Perspective and Further Reading 7.14-5

elements [Bell, 1989]. To put this prediction in perspective, each year the Gordon
Bell Prize acknowledges advances in parallelism, including the fastest real program
(highest MFLOPS). In 1989 the winner used an eight-processor Cray Y-MP to run
at 1680 MFLOPS. On the basis of these numbers, multiprocessors and programs
would have to have improved by a factor of 3.6 each year for the fastest program
to achieve 1 TFLOPS in 1995. In 1999, the first Gordon Bell prize winner crossed
the 1 TFLOPS bar. Using a 5832-processor IBM RS/6000 SST system designed
specially for Livermore Laboratories, they achieved 1.18 TFLOPS on a shock wave
simulation. This ratio represents a year-to-year improvement of 1.93, which is still
quite impressive.
What has been recognized since the 1990s is that although wemay have the tech-

nology to build a TFLOPS multiprocessor, it is not clear that the machine is cost
effective, except perhaps for a fewvery specialized and critically important applica-
tions related to national security. We estimated in 1990 that achieving 1 TFLOPS
would require a machine with about 5000 processors and would cost about $100
million. The 5832-processor IBM system at Livermore cost $110 million. Asmight
be expected, improvements in the performance of individual microprocessors both
in cost and performance directly affect the cost and performance of large-scale
multiprocessors, but a 5000-processor system will cost more than 5000 times the
price of a desktop system using the same processor. Since that time, much faster
multiprocessors have been built, but the major improvements have increasingly
come from the processors in the past five years, rather than fundamental break-
throughs in parallel architecture.
The second Bell prediction concerned the number of data streams in super-

computers shipped in 1995. Danny Hillis believed that although supercomputers
withasmallnumberofdatastreamsmightbethebestsellers, thebiggestmultiproces-
sors would be multiprocessors with many data streams, and these would perform
the bulk of the computations. Bell bet Hillis that in the last quarter of calendar year
1995, more sustained MFLOPS would be shipped in multiprocessors using few
data streams (<100) rather than many data streams (>1000). This bet concerned
only supercomputers, defined as multiprocessors costingmore than $1million and
used for scientific applications. Sustained MFLOPS was defined for this bet as the
number of floating-point operations per month, so availability of multiprocessors
affects their rating.
In 1989, when this bet was made, it was totally unclear who would win. In

1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams, so
Bell’s prediction was a clear winner. In fact, in 1995, much smaller microprocessor-
based multiprocessors (<20 processors) were becomingdominant.
In 1995, a survey of the 500 highest-performance multiprocessors in use

(based on Linpack ratings), called the Top 500, showed that the largest number
of multiprocessors were bus-based shared memory multiprocessors! By 2005,

7.14-6 7.14 Historical Perspective and Further Reading

various clusters or multicomputers played a large role. For example, in the top 25
systems, 11 were custom clusters, such as the IBM Blue Gene system or the Cray
XT3, 10 were clusters of shared memory multiprocessors (both using distributed
and centralized memory), and the remaining 4 were clusters built using PCs with
an off-the-shelf interconnect.

More Recent Advances and Developments
With the primary exception of the parallel vector multiprocessors and more
recently of the IBM Blue Gene design, all other recent MIMD computers have
been built from off-the-shelf microprocessors using a bus and logically central
memory or an interconnection network and a distributed memory. A number of
experimental multiprocessors built in the 1980s further refined and enhanced the
concepts that form the basis for many of today’smultiprocessors.

The Development of Bus-Based Coherent Multiprocessors
Although very large mainframes were built with multiple processors in the 1960s
and 1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggests the keywas that the smaller size of the microprocessor allowed the
memory bus to replace the interconnection network hardware and that port- able
operating systems meant that multiprocessor projects no longer required the
invention of a new operating system. In this paper, Bell defined the terms multi-
processor and multicomputer and set the stage for two different approaches to
building larger-scale multiprocessors. The first bus-based multiprocessor with
snooping caches was the SynapseN + 1 in1984.
The early 1990s saw the beginning of an expansion of such systems with the use

of very wide, high-speed buses (the SGI Challenge system used a 256-bit, packet-
oriented bus supporting up to 8 processor boards and 32 processors) and later the
use of multiple buses and crossbar interconnects, for example, in the Sun
SPARCCenter and Enterprise systems. In 2001, the Sun Enterprise servers
represented the primary example of large-scale (>16 processors), symmetric
multiprocessors in activeuse.

Toward Large-Scale Multiprocessors
In the effort to build large-scale multiprocessors, two different directions were
explored: message-passing multicomputers and scalable shared memory
multiprocessors. Although there had been many attempts to build mesh and
hypercube-connected multiprocessors, one of the first multiprocessors to suc-
cessfully bring together all the pieces was the Cosmic Cube built at Caltech [Seitz,
1985]. It introduced important advances in routing and interconnect technology
and substantially reduced the cost of the interconnect, which helped make the

7.14 Historical Perspective and Further Reading 7.14-7

multicomputer viable. The Intel iPSC 860, a hypercube-connected collection of
i860s, was based on these ideas. More recent multiprocessors, such as the Intel
Paragon, have used networks with lower dimensionality and higher indi- vidual
links. The Paragon also employed a separate i860 as a communications
controller in each node, although a number of users have found it better to use
both i860 processors for computation as well as communication. The Thinking
Multiprocessors CM-5 made use of off-the-shelf microprocessors. It provided
user-level access to the communication channel, significantly improving com-
munication latency. In 1995, these two multiprocessors represented the state of
the art in message-passingmulticomputers.

Clusters
Clusters were probably “invented” in the 1960s by customers who could not fit all
their work on one computer, or who needed a backup machine in case of failure
of the primary machine [Pfister, 1998]. Tandem introduced a 16-node cluster in
1975. Digital followed with VAXclusters, introduced in 1984. They were originally
independent computers that shared I/O devices, requiring a distributed operating
system to coordinate activity. Soon they had communication links between com-
puters, in part so that the computers could be geographically distributed to increase
availability in case of a disaster at a single site. Users log onto the cluster and are
unaware of which machine they are using. DEC (now HP) sold more than 25,000
clusters by 1993. Other early companies were Tandem (now HP) and IBM (still
IBM). Today, virtually every company has cluster products. Most of these products
are aimed at availability, with performance scaling as a secondary benefit.
Scientific computing on clusters emerged as a competitor to MPPs. In 1993, the

Beowulf project started with the goal of fulfilling NASA’s desire for a 1-GFLOPS
computer for less than $50,000. In 1994, a 16-node cluster built from off-the-shelf
PCs using 80486s achieved that goal. This emphasis led to a variety of software
interfaces to make it easier to submit, coordinate, and debug large programs or a
large number of independent programs.
Efforts were made to reduce latency of communication in clusters as well as to

increase bandwidth, and several research projects worked on that problem. (One
commercial result of the low-latency research was the VI interface standard, which
has been embraced by Infiniband, discussed below.) Low latency then proved
useful in other applications. For example, in 1997 a cluster of 100 UltraSPARC
desktop computers at U.C. Berkeley, connected by 160 MB/sec per link Myrinet
switches, was used to set world records in database sort (sorting 8.6 GB of data
originally on disk in 1minute) and in cracking an encrypted message (taking just
3.5 hours to decipher a 40-bit DESkey).
This research project, called Network of Workstations, also developed the

Inktomi search engine, which led to a start-up company with the same name.

7.14-8 7.14 Historical Perspective and Further Reading

Google followed the example of Inktomi to build search engines from clusters of
desktop computers rather than large-scale SMPs, which was the strategy of the
leading search engine, Alta Vista, that Google overtook. In 2008, nearly all Internet
services rely on clusters to serve their millions ofcustomers.
Clusters are also very popular with scientists. One reason is their low cost, which

enables individual scientists or small groups to own a cluster dedicated to their
programs. Such clusters can get results faster than waiting in the long job queues of
the sharedMPPs at supercomputer centers, which can stretch to weeks.
For those interested in learning more, Pfister [1998] has written an entertaining

book on clusters.

Recent Trends in Large-Scale Multiprocessors
In the mid-to-late 1990s, it became clear that the hoped-for growth in the market
for ultralarge-scale parallel computing was unlikely to occur. Without this market
growth, it became increasingly clear that the high-end parallel computing market
was too small to support the costs of highly customized hardware and software
designed for a small market. Perhaps the most important trend to come out of
this observation was that clustering would be used to reach the highest levels of
performance. There are now four general classes of large-scalemultiprocessors:

1. Clusters that integrate standard desktop motherboards using interconnec-
tion technology, such asMyrinet or Infiniban

2. Multicomputers built from standard microprocessors configured into pro-
cessing elements and connected with a custom interconnect, such as the IBM
BlueGene

3. Clusters of small-scale shared memory computers, possibly with vector
support, including the EarthSimulator

The IBM Blue Gene is the most interesting of these designs, since its rationale
parallels the underlying causes of the recent trend towardsmulticore in uniprocessor
architectures. Blue Gene started as a research project within IBM aimed at the pro-
tein sequencing and folding problem. The BlueGene designers observed that power
was becoming an increasing concern in large-scale multiprocessors and that the
performance/watt of processors from the embedded space was much better than
those in the high-end uniprocessor space. If parallelism was the route to high
performance, why not start with the most efficient building block and simply have
more of them?
Thus, Blue Gene is constructed using a custom chip that includes an embedded

PowerPC microprocessor offering half the performance of a high-end PowerPC,
but at a much smaller fraction of the area and the power. This allows more system
functions, including the global interconnect, to be integrated onto the same die.

7.14 Historical Perspective and Further Reading 7.14-9

The result is a highly replicable and efficient building block, allowing Blue Gene to
reach much larger processor counts more efficiently. Instead of using stand-alone
microprocessors or standard desktop boards as building blocks, Blue Gene uses
processor cores. There is no doubt that such an approach provides much greater
efficiency. Whether the market can support the cost of a customized design and
special software remains an openquestion.
In 2006, a BlueGene processor at Lawrence Livermore with 32Kprocessors held

a factor of 2.6 lead in Linpack performance over the third-place system, which
consisted of 20 SGI Altix 512-processor systems interconnected with Infiniband as
a cluster.
Blue Gene’s predecessor was an experimental machine, QCDOD, which pio-

neered the concept of a machine using a lower-power embedded microprocessor
and tightly integrated interconnect to drive down the cost and power consumption
of a node.

Looking Further
There is an almost unbounded amount of information on multiprocessors and
multicomputers: conferences, journal papers, and even books seem to appear faster
than any single person can absorb the ideas. No doubt many of these papers will go
unnoticed—not unlike the past. Most of the major architecture conferences con-
tain papers on multiprocessors. An annual conference, Supercomputing XY(where
X and Yare the last two digits of the year), brings together users, architects, soft-
ware developers, and vendors and publishes the proceedings in book, CD-ROM,
and online (see www.scXY.org) form. Two major journals, Journal of Parallel and
Distributed Computing and the IEEE Transactions on Parallel and Distributed Sys-
tems, contain papers on all aspects of parallel processing. Several books focusing
on parallel processing are included in the following references, with Culler, Singh,
and Gupta [1999] being the most recent, large-scale effort. For years, Eugene Miya
of NASAAmes has collected an online bibliography of parallel processing papers.
The bibliography, which now contains more than 35,000 entries, is available online
at liinwww.ira.uka.de/bibliography/Parallel/Eugene/index.html.
Asanovic, et al. [2006] recently surveyed the wide-ranging challenges for the

industry in this multicore challenge. That report may be a helpful in understanding
the depth of the variouschallenges.
In addition to documenting the discovery of concepts now used in practice,

these references also provide descriptions of many ideas that have been explored
and found wanting, as well as ideas whose time has just not yet come. Given the
move toward multicore and multiprocessors as the future of high-performance
computer architecture, we expect that many new approaches will be explored in
the years ahead. A few of them will manage to solve the hardware and software
problems that have been the key to using multiprocessing for the past 40 years!

http://www.ira.uka.de/bibliography/Parallel/Eugene/index.html

List of Intel microprocessors
From https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

64 bit processors: Intel 64 – Skylake microarchitecture

Core i3 (6th Generation)

• Skylake (Core i3 6th Generation) – 14 nm process technology
o 2 physical cores/4 threads
o 3–4 MB L3 cache
o Introduced Q3'15
o Socket 1151 LGA
o 2-channel DDR3L-1333/1600, DDR4-1866/2133
o Integrated GPU Intel HD Graphics 530 (only i3-6098P have HD Graphics 510)
o Variants

§ i3-6098P – 3.60 GHz
§ i3-6100T – 3.20 GHz
§ i3-6100 – 3.70 GHz
§ i3-6300T – 3.30 GHz
§ i3-6300 – 3.80 GHz
§ i3-6320 – 3.90 GHz

Core i5 (6th Generation)

• Skylake (Core i5 6th Generation) – 14nm process technology
o 4 physical cores/4 threads
o 6 MB L3 cache
o Introduced Q3'15
o Socket 1151 LGA
o 2-channel DDR3L-1333/1600, DDR4-1866/2133
o Integrated GPU Intel HD Graphics 530
o Variants

§ i5-6400T – 2.20 GHz/2.80 GHz Turbo Boost
§ i5-6400 – 2.70 GHz/3.30 GHz Turbo Boost
§ i5-6500T – 2.50 GHz/3.10 GHz Turbo Boost
§ i5-6500 – 3.20 GHz/3.60 GHz Turbo Boost
§ i5-6600T – 2.70 GHz/3.50 GHz Turbo Boost
§ i5-6600 – 3.30 GHz/3.90 GHz Turbo Boost
§ i5-6600K – 3.50 GHz/3.90 GHz Turbo Boost

Core i7 (6th Generation)

• Skylake (Core i7 6th Generation) – 14nm process technology
o 4 physical cores/8 threads
o 8 MB L3 cache
o Introduced Q3'15
o Socket 1151 LGA
o 2-channel DDR3L-1333/1600, DDR4-1866/2133
o Integrated GPU Intel HD Graphics 530
o Variants

§ i7-6700T – 2.80 GHz/3.60 GHz Turbo Boost
§ i7-6700 – 3.40 GHz/4.00 GHz Turbo Boost
§ i7-6700K – 4.00 GHz/4.20 GHz Turbo Boost

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/Core_i3
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/14_nanometer
https://en.wikipedia.org/wiki/LGA_1151
https://en.wikipedia.org/wiki/Core_i5
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/14_nanometer
https://en.wikipedia.org/wiki/LGA_1151
https://en.wikipedia.org/wiki/Core_i7
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/14_nanometer
https://en.wikipedia.org/wiki/LGA_1151

M o d e l • Pr ice (USD) • c ores /Th r eads • Base f reque ncy (GH z.)• M ax turb o f reque n cy (GHI) • GPU • M a x i mum GP U c l o ck r a t e (MHz.) • L 3 c ache (MB) • TDP (W) ♦ soc k et • Re l ease •

i9-9900K $529 8/16 3.6
- -

3.7
-

-

3.7

5.0

4.9

4.6

UHD 630 1200
-

1200
-

1150

16

12

9

95 LGA 1151 04 2018

i7-9700K $399 818
-

-
UHD 630 95 LGA 1151 0 42018

i5-9600K $229 616 UHD630 95 LGA 1151 04 2018

i7-8086K@ $425 6/12 4.0 5.0 UHD 630 1200 12 95 LGA 1151 02 2018

i7-8700K@ $359 6/12 3.7
-

4.7 UHD 630 1200 12 95 LGA 1151 Q4 2017

17-8700@ $3{)3 6/12 3.2
-

4.6
UHD 630 1200 12

-

65 LGA 1151 Q4 2017

15-8600K@ $257 616 3.6 4.3 UHD 630 1150 9 95 LGA 1151
-

Q4 2017

iS-8500@ $202 6/6 3.0 4.1 UHD 630 1100 9 65 LGA 1151 02 2018

i5-8400 $182 6/6 2.8
-

4.0 UHD 630 105() 9
-

65 LGA 1151 0 4 2017

i3-8350K @ $168 414 4.0 NIA UHD 630 1150 8 91 LGA 1151 Q4 2017
- -

13-810 0@ $117 414 3.6 NIA UHD 630 1100 6 65 LGA 1151 Q4 2017

. .Mo del Pr ice (US□)
+

Cores / Th r eads + B a se f r eq u ency (GHz) • Ma x tu rb o freq u ency (GHz) • GPU M ax i mum GPU c lock r a t e (MHz) + L 3 cache (MB) • TDP (W) ♦ Rel ease •

i7-8650U@ $409 418

418

19

18

42

4 0

3.6

UHD 620 115()

115()

8

8

15 03 2017

i7-85 50U $409 UHD 620 15
-

0 3 2 0 1 7

i5-8350U

-- -

UHD 620

- -

5297 418 u 1100 6 15 0 3 2017

i5-8250U $297 418 1 6 34 UHD 620 1100 6 15 0 3 2017

Mo del ' Pri1:=e-(U SD) • Gores/Thr eads • 8-a.s.e f re-qu e-n cy (GHz.,) Max tu rb-of re-quency (GHz.,) G P U •
lila.xim um GPU

c l oc:k rate {MIH :z.)'
L3

cac he { MB) ' TDP (WI o Sooltet
•·

Rele-.a.s.e,

B-7900::C:E S1933 1813/! 2.6 4.2 NIA NIA 2 4.75 165 LGA
2000

00 201JC11

l9-100!))(,o. :S163S 100 2 2.8 4.2 NIA NIA 22.00 165 LGA:2000 00 20 11' 11

B-J940XJ.... S l.393 14128 3.1 4.3 NIA NIA 19.25 165 LGA OOZ0 1Ji:1l

l9-7S20)(... S1189 1 4 2.9 4.3 NIA NIA 16.M 140 LGA
2000

Q3 2017

i'9-7900X
J....

$999 10/20 3.3 4.3 NIA NIA 13.15 140 LGA:2000 Q2 2(11]

i7-7320X,_ $ 5 9 , 11116 3 .6 4.3 NIA NIA 11.03 140 LGA
2,Cff,

Q2 2017

i7-7&00X
....,_

$389 "'1 2 3.5 4.0 NIA NIA 8 .25 140 LGA :2000 02 2017

i7-n40X....,_ $3..'-0= 418 4.3 4.5 NIA NIA 8 112 LGA Q I 2017

i7-n OOK 418 4.2 4.5 HDo:30 11!1.l 8 91 LGA11.51 Q I 2017

u-noo-1.,. $>12 418 3 .6 4.2 HDo:30 ii .00 8 M LGA H-51 Q i 2017

i7-ITOOT-1.,. Sl 2 4/8 2.9 3.8 HDo:30 l !'f.l 8 35 LGA n. 5 Oi 20 7

i5-7 G.40XJ.... S242 414 4.0 4.2 NIA NIA 6 112 LGA.2,Ctx, Q I 201

i5-7&00K....,._ S24J. 414 3.8 4.2 HDo:30 11!1.l • 91 LGA 11-51 Q I 2017

i5-]00[),1_;. S224 414 3.5 4.1 HDo:30 nw 6• M LGA 11-51 Q i 2017

i5-7600T J.... S224 414 2.8 3.1 HDo:30 1100 • 35 LGA 11-51 Q i 2017

i5-
7500.,_,_

S202= 414 3.4 3.8 HDo:30 110J M LGA11.51 Q l 2017

i5-7500T J.,. 414 2.1 3.3 HDo:30 UOJ 6 35 LGA U.51 Q i 20 7

iS-7400...,_ $1 414 3.0 3.5 HDo:30 1000 6 M LGA 1151 QI 201

i5-7400T :Sl:87 414 2.4 3.0 HD630 1000 6 35 LGA 11.51 Q I 2017

il -7J. K,_ :SH9 214 4.2 NIA HDo:30 ii .50 4 00 LGA H-51 Qi 2\'.ll17

i3-7320:I.- :Si-57 214 4. i NIA HDo:30 ii .10 4 51 LGA H-51 Q i 2017

il -7300.,_,_ Sl 47 214 4.0 NIA HDo:30 11!1.l 4 51 LGA11.51 Q I 2017

i.l-73.00T -1.,. $ 147 214 3.5 NIA H D630 iiOJ 4 35 LGA 11.51 Q i 2"017

il -7100 SI 7 214 3.9 NIA HDo:30 1 03 3 51 LGAH.5 Q I 20 7

i.3,-7 1 00T $ i17 214 3.4 NIA HDo:30 i10 J 3 35 LGA 11-51 Q i 2017

i3-71'!HE $ 117 214 3.9 NIA HDo:30 110J 3 54 LGA11-51 0 1 2017

i3-7101TE :Sil l 214 3.4 NIA H Do:30 110J 3 35 LGA11-51 Q l 2017

G.4&20 $3:l 214 3.7 NIA HDo:30 1100 3 51 LGA 11.51 Q i 2017

G4600< $!!2 214 3.6 NIA HD630 ll OJ 3 51 LGA 11.51 Q l 2017

G46:>DT $75 214 3.0 NIA H Do:30 050 3 35 LGA 5 Q 2 (1]

G.4560 W4 214 3.5 NIA HD 6 10 1050 3 54 LGA H-51 Q i 2017

G4E6DT W4 214 2.9 NIA HD 6 10 1050 3 35 LGA 11.51 Q I 2017

G39..'-0•=· $52 212 3.0 NIA HD 610 10.'.-0 2 51 LGA 11-51 0 1 2017

542 212 2.9 NIA HD 6 10 10!1.l 2 51 LGA H-51 Q i 2011

GJ9:lOT $42 212 2.7 NIA HD610 1000 2 35 LGA 11.51 Q l 2011

Latest desktop and mobile processors for consumers [edit J

9th genera tion Core/Coff ee Lake [edit]

8th generation Core/Coffee Lake/Kaby Lake Refresh [edit]

Des kt op I edit I

M ode l • Pr i ce (U SC) ♦ C o res / Threads + B a s e f r e q u e n cy (GH z.) + M ax t urbo freque n cy (GH z.) + GP U ♦ M ax im um GPU cl oc k r at e (MHz.) + L3 c a c h e (M B) + TDP (W) ♦ Soc k e t ♦ Re l ease +

M o b i l e [edit]

7t h gene rati oin Cor,e JKaby Lak eJS.k ylake (X -series Proc e s so r s)/Apo llo Lak e (.edit)

Desktop- (ed i t)

Model • Price (USD} • Cores/Threads •
CPU

clock rate(GHz) • CPU Turbo clock rate (GHz) • GPU • t.ta.xi m u mGP U clock rate (MHz)• Ca ch e (MB } • TOP (W} • Re l ea se •

i7-7920HQ<- S!& 418 3.1 4.1 HD830 1100 8 45 Q l 20\7

i7-7820HQ<- S378 418 2.9 3.9 HD830 1100 8 45 Q l 20\7

i7-7820HK<- S378 418 2.9 3.9 HD830 HOO 8 45 Q i 20 i7

i7-7700HQ<- S378 418 2.8 3.8 HD830 HOO 6 45 Q i 20 i7

i7-7e60U<- S4 l5 2/4 2.5 2.5 lris?hts640 HOO 4 15 Q i 20 i7

i7-7600U<- S393 2/4 2.8 2.8 H 0 6 2 0 tl!<O 4 15 03 2016

i7 -7567U <- NIA 2/4 3.5 3.5 lris?lus6:<> tl !<) 4 28 03 2016

i7-7560U<- S415 2/4 2.4 2.4 l ris?lus 640 10!<> 4 15 Q l 20 \7

i7-7500U<- S393 2/4 2.7 3.5 HD820 \O!<) 4 15 Q i 20 i7

i7-7Y75<- S393 2/4 i .3 3.6 H0 6 i 5 \O!<) 4 4.5 Q i 20 i7

i5-7440HQ<- S2!<> 414 2.8 3.8 HD830 l(XX) 6 45 Q i 20 i7

i5-7300HQ<- S2!<> 414 2.5 3.5 HD830 \(XX) 6 45 Q l 20 \7

i5-7360U<- S304 2/4 2.3 2.3 lris?lus640 \(XX) 4 15 Q l 20 \7

i5-7300U<- S281 2/4 2.6 2.6 H 0 6 2 0 1100 3 15 Q l 20 \7

i5-7287U<- NIA 2/4 3.3 3.3 lris?hts6:<) HOO 4 28 Q i 20 i7

i5-7267U<- NIA 2/4 3. i 3.1 lris?hts6:<) \O!<) 4 28 Q i 20 i7

i5-7260U<- S304 2/4 2.2 2.2 lris?hts640 st<> 4 1 5 Qi 20i7

i5-7200U<- S281 2/4 2.5 2.5 H 0 6 2 0 \(XX) 3 15 03 2016

i5-7Y57<- S28 1 2/4 1 .2 3.3 H0 615 st<> 4 4 .5 Q l 20\7

i5-7Y54<- S28 1 2/4 1 .2 3 .2 H0 615 st<> 4 4 .5 Q l 20\7

il-7100H.e.. S225 2/4 3.0 NIA HD830 st<> 3 35 Qi 20i7

il-7167U<- NIA 2/4 2.8 NIA lris?hts6:<) \(XX) 3 28 Q i 20 i7

il-7130U<- NIA 2/4 2.7 NIA HD820 \(XX) 3 15 Q2 20i7

il- 7100U<- S281 2/4 2.4 NIA H 0 6 2 0 \(XX) 3 15 03 2016

ml-7Y32<- S281 2/4 I . I 3.0 H0 615 900 4 4.5 Q2 20\7

ml-7Y30<- S281 2/4 1.0 2.6 H0 615 900 4 4.5 03 2016

N4200<- S16i 414 u 2.5 H0!<>5 700 2 (t2) 6 03 2016

4415U<- S16i 2/4 2.3 NIA H0 610 st<> 2 1 5 Qi 20i7

4415Y<- S16i 2/4 i .6 NIA H0 6 i 5 8!<) 2 6 Q2 20 i 7

4410Y <- S16l 2/4 1.5 NIA H0 615 8!<) 2 6 Q l 20 \7

N3450<- S107 414 I .I 2.2 H0 !.00 6.:<) 2 (t2) 6 03 2016

N3350• S107 2/2 I . I 2.4 H0 !.00 6.<:) 2 (t2) 6 03 2016

3 9 6 5 U • S107 2/2 2.2 NIA H0 610 900 2 15 Qi 20i7

W 5 5 U • S107 2 /2 i .8 NIA H0 610 900 2 15 Qi 20i7

AMD “ZEN” Core

For “Wintel” Machines
(i.e., Windows Operating Systems, Intel x86-FAMILY of Processors)

NOTE: AMD is a competitor of Intel, but adheres to the Machine
Instruction Set of the Intel x86-Processor Family

J Wunderlich PhD 2018 Lecture Notes

SOURCE: http://www.amd.com/en-us/innovations/software-technologies/zen-cpu

https://en.wikipedia.org/wiki/X86
http://www.amd.com/en-us/innovations/software-technologies/zen-cpu

PurePower
Gooil and quiet processor operation usin gmachine intelligence, se n.sor s, and optimized cimuit desi,gin.

■ Monitors temperature, speed and voltage

■ Adaptive control manages reall ti me for lower power usage
■ Ongoingmonitoring guidesother AMDSenseMI features

IP1recisionBoost

IFine-tunedprocessor performance adjusted in real time to rrne et the clockspeeddeman.ds of your game or

app.

■ Works in tande m with Pure Power co:ntrol! loop to optimize performance

■ On-t he-fily clock adj ustment without halts or quI euedrains

■ High precision tuniing with 25MHz incr ements

Extended FrequencyRange
AIut omati c extra perfor man ce boost for e nt h u siasts wiith premium syst ems an,d process,or cooling.

■ Permits frequencie.s above and beyond ordinary Prec1ision Boost limi ts

■ crockspeed scares wit h cooling soluti on: air, water, and LN2

■ Fullyaut o m at ed; no user intervention r equired

NEURAL NETWORK PREDICTIION

Buillt-in artificial intelligence that primes your processor to tackle
your app workload more efficiently.

1. A true artificial network inside every '" Zen" processor
2. Builds s a model of the decisions driven by software code

execution
3. Anticipates future decisions, pre-load instructions, choose

the best path through the CPU
SmartPrefetch

Leaming algorithms that pred ict and pre-road needed data fo:r fast and responsive computing.

■ Ainticipates the rocatio n of fut ure data, aocesses by appllication code
■ Sophisticat ed learn ing algor it hms model and leam app l1i cati on data acc, ess.pattems

■ Preifet ches vital dat a in o loca, ll cache so it 's r eady fo r im m ed iat e use

JT Wunderlich PhD in the early 1990’s

TRAINING SET for
LEARNING
PHASE:

.
Mom Dad

X Y Decision
Exemplar #1 0 0 0 Puppy
Exemplar #2 0 1 1 Kitten
Exemplar #3 1 0 1 Kitten
Exemplar #4 1 1 1 Kitten
And the LEARNING process:
1) Initialize the inter-neuron connection weights to randomized values
2) Feed the neural network one examplar at a time, each time using the error between desired

output in actual output to change connection-weights between neurons
3) Repeat (2) until the output error is within reasonable proximity of desired output for every

exemplar (e.g., Decision<=0.1 for puppy, Decision>=0.9 for kitten). Each time you do this with
the entire training set is called an "EPOCH". The LEARNING PHASE can take thousands of
EPOCHS.

4) After learning is done, the neural network will react instantly to not only binary inputs, but
variations of the inputs.

NEURAL NETWORK case 2: Using same thoughts of the parents as in Symbolic AI case
Mom Dad

X Y Decision
Exemplar #1 0.2 0.2 0 Puppy
Exemplar #2 0.2 0.8 1 Kitten
Exemplar #3 0.8 0.2 1 Kitten
Exemplar #4 0.8 0.8 1 Kitten IT STILL LEARNED, BUT IT JUST TOOK LONGER

Actual
Output

Ok

Oi=Oa=X

jO=

Oj

Wde

Wc

WeBIAS

e BIAS

Machine Intelligence
Symbolic AI vs NeuralNetworks

J Wunderlich PhD
SYMBOLIC AI uses special forms of computer programming to establish rules that lead to outcomes in a more efficient way; this includes using heuristics to prune the search space.
NEURAL NETWORKS use a collection of standardized decision nodes (Neurons), often organized into layers, to collectively generalize to solutions based on being trained with a data set
(for supervise learning). The network LEARNS by modifying the strength of the connections between NEURONS to satisfy all of the training set by making small incremental changes in
the connection weights over many iterations of reacting to the training set. Then, after learning, the machine can not only rapidly react to input of the exemplars in the training set, but can
also react in a desired way to many variations of the inputs.
Example: suppose you have two parents deciding between getting a puppy or a kitten for their baby to play with. So we assign a binary variable to this decision as 0 for a puppy, and 1 for a
kitten.
Non- Machine Intelligence case: Parents agree that if either one of them really wants a certain kitten, the spouse will yield to that desire. This would be like a binary OR gate where the
parents, assigned variables X and Y, would decide an outcome of 1 (for a kitten), So:
Mom Dad
X Y Decision
0 0 0 Puppy
1 1 1 Kitten
2 0 1 Kitten
1 1 1 Kitten

And the decision process, without pruning the search space, would look like this:
1) If XY = 00, then decision equals puppy
2) Else if XY = 01, then decision equals kitten
3) Else if XY = 10, then decision equals kitten
4) Else if XY = 11, then decision equals kitten

SYMBOLIC AI case :
Parents 20% confident in their choice:
Mom Dad
X Y Decision
0.2 0.2 0 Puppy with XX%confidence
0.2 0.8 1 Kitten with XX% confidence
0.8 0.2 1 Kitten with XX% confidence
0.8 0.8 1 Kitten with XX% confidence
The decision process would look like what we discussed previously for an “Expert System” picking a toy for a
child: http://users.etown.edu/w/wunderjt//EGR_CS230/PACKET%2020F%20HANDOUT%20CogSci%20HCI%20Lecture%202018.pdf
NEURAL NETWORK case 1: Using same thoughts of the parents as in the Non- Machine Intelligence case

c BIAS

WdBIAS

d BIAS

WcBIAS

Wb

Wad

Wbc

Wac

e

d

c

b
Oi=Ob=Y

aX

X2

0.2 0.2 INPUT
0.2 0.8 INPUT
0.8 0.2 INPUT
0.8 0.8 INPUT

http://users.etown.edu/w/wunderjt/EGR_CS230/PACKET%2020F%20HANDOUT%20CogSci%20HCI%20Lecture%202018.pdf

But if we use the weights from the learned “OR” of Neural Network Case 1, IT LEARNS MUCH FASTER:

NEURAL NETWORK case 3: Neural Network Case 1 after learning, instant result (no learning needed) for any exemplar input in training set
NEURAL NETWORK case 4: Neural Network Case 1 after learning, instant result (no learning needed) for any exemplar input with a little bit of noise corrupting input (e.g., 5%)

NEURAL NETWORK case 5: For some strange reason, the parents only get a kitten if just one of them wants it, otherwise they get a puppy. This is an XOR function which is harder for a
Neural Network to learn because it is a “NONLINEAR SEPARABLE” problem -- think about the logic of what it is trying to solve; if gets no input as in Exemplar #1, nothing comes out, and
then if it gets input from either X or Y, it fires, but if both X and Y input 1, nothing comes out – this is counterintuitive – and the Neural Network thinks so too; so it must struggle to solve
this, and it therefore takes longer to learn.

Mom Dad
X Y Decision

Exemplar #1 0 0
Exemplar #2 0 1
Exemplar #3 1 0
Exemplar #4 1 1

1 Puppy
2 Kitten
1 Kitten
0 Puppy

0.2 0.2 INPUT
0.2 0.8 INPUT
0.8 0.2 INPUT
0.8 0.8 INPUT

NEURAL NETWORK case 6: For some strange reason, the parents only get a puppy if both of them, plus the neighbor, all either agree to get a puppy, or for some really odd reason all
want a kitten. This is also a NONLINEAR SEPARABLE problem. We need three inputs, and 1 output, and we choose to have three neurons in the input layer to better facilitate learning.

Mom Dad Neighbor
X Y Z Decision

Exemplar #1 0 0 0 0 Puppy
Exemplar #2 0 0 1 1 Kitten
Exemplar #3 0 1 0 1 Kitten
Exemplar #4 0 1 1 1 Kitten
Exemplar #5 1 0 0 1 Kitten
Exemplar #6 1 0 1 1 Kitten
Exemplar #7 1 1 0 1 Kitten
Exemplar #8 1 1 1 0 Puppy

MATLAB CODE:
%**
% A 2-2-1 or 3-3-1 back-propagation Neural Network
% by Joseph Wunderlich,Ph.D.
%
% 4/19/18:
% Removed outdated "h=" handle, and input number, in Legend function
% 12/11/09:
% Added disabling plotting for speed
% Removed discontinued "flop(s)" function
% 12/10/09:
% Created new file NN2_2009.m
% Added 3-3-1 capability
% 3/29/04, fixed NN2.m:
% WcBIAS=WcBIAS+dWcBIAS;
% WdBIAS=WcBIAS+dWcBIAS;
% WeBIAS=WcBIAS+dWcBIAS;
%
% Created original files "NN1.m" and "NN2.m" in 1990's
%**

%******************** START TIMER AND INSTRUCTION COUNTER
startTIME=cputime;

%******************* PICK AN ARCHITECTURE of 2-2-1 or 3-3-1 ***************************
ARCHITECTURE=1; %"1" means 2-2-1, "2" means 3-3-1 Network Architecture

%******************** 2-2-1 and 3-3-1 INPUT

PLOTTING=1;
RATE=1;
EPOCHcountMAX=2000;
STOPtolerance=.1;

%Turn plotting on "1" or off "0" for speed
%Learning Rate
%Stop if goal not reached after this many iterations
%How close to get to asymptotes at 0 or 1

%Training sets of exemplars for each architecture:
EXEMPLAR_221=[0.2

0.2

0.2 0; %input1, input2, and desiredoutput
for

0.8 1; %input1, input2, and desiredoutput

for

exemplar

exemplar

#1

#2

0.8 0.2 1; %input1, input2, and desiredoutput
for

exemplar #3

0.8 0.8 1]; %input1, input2, and desiredoutput
for

exemplar #4

EXEMPLAR_331=[0 0 0 0; %input1,2,3 and desiredoutput for exemplar #1
0 0 1 1; %input1,2,3 and desiredoutput for exemplar #2
0 1 0 1; %input1,2,3 and desiredoutput for exemplar #3
0 1 1 1; %input1,2,3 and desiredoutput for exemplar #4
1 0 0 1; %input1,2,3 and desiredoutput for exemplar #5
1 0 1 1; %input1,2,3 and desiredoutput for exemplar #6
1 1 0 1; %input1,2,3 and desiredoutput for exemplar #7
1 1 1 0]; %input1,2,3 and desiredoutput for exemplar #8

if ARCHITECTURE==1 % START IMPLIMENTING 2-2-1 ARCHITECTURE
%******************************* 2-2-1 INITIALIZATION

Wac=.5; Wad=.6;
Wbc=.7; Wbd=.8;
Wce=.9; Wde=1;
WcBIAS=1; WdBIAS=1; WeBIAS=1;
%Here's the learned weights for binary "OR" behavior. Try these with
%non-binary inputs to see Neural Network generalize an answer:
Wac=2.587599880586697; Wad=3.252993565762999;
Wbc=2.622851399549637; Wbd=3.263788576863788;
Wce=3.400823954387610; Wde=4.650702692016342;
WcBIAS=-1.450905811079590; WdBIAS=-1.774565860598957; WeBIAS=-3.521403729223980;

cBIAS=1; dBIAS=1; eBIAS=1;
Exemplar1_OutputLAST=[.5 .5 .5]; %just to get it started
Exemplar2_OutputLAST=[.5 .5 .5];
Exemplar3_OutputLAST=[.5 .5 .5];
Exemplar4_OutputLAST=[.5 .5 .5];
EPOCHcount=0;
n=1;

%**

%************************************* 2-2-1 MAIN LOOP
**
%**

while ((EPOCHcount) < EPOCHcountMAX)& ...
((abs(Exemplar1_OutputLAST(3)-EXEMPLAR_221(1,3))> STOPtolerance)| ...
(abs(Exemplar2_OutputLAST(3)-EXEMPLAR_221(2,3))> STOPtolerance)| ...
(abs(Exemplar3_OutputLAST(3)-EXEMPLAR_221(3,3))> STOPtolerance)| ...
(abs(Exemplar4_OutputLAST(3)-EXEMPLAR_221(4,3))> STOPtolerance))

EPOCHcount=EPOCHcount+1;
for i=1:4
Oc=1/(1+exp((-(cBIAS*WcBIAS)- EXEMPLAR_221(i,1)*Wac - EXEMPLAR_221(i,2)*Wbc)));

Od=1/(1+exp((-(dBIAS*WdBIAS)- EXEMPLAR_221(i,1)*Wad - EXEMPLAR_221(i,2)*Wbd)));
Oe=1/(1+exp((-(eBIAS*WeBIAS)- Oc*Wce - Od*Wde)));
if i==1

Exemplar1_OutputLAST=[EXEMPLAR_221(i,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Oe,'bo');
hold on;

end;
elseif i==2

Exemplar2_OutputLAST=[EXEMPLAR_221(i,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Oe,'bx');
hold on;

end;
elseif i==3

Exemplar3_OutputLAST=[EXEMPLAR_221(i,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Oe,'rx');
hold on;

end;
else

Exemplar4_OutputLAST=[EXEMPLAR_221(i,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Oe,'ro');
hold on;

end;
end;

Exemplars_OutputLAST=[EPOCHcount/10000 Exemplar1_OutputLAST; ...
EPOCHcount/10000 Exemplar2_OutputLAST; ...
EPOCHcount/10000 Exemplar3_OutputLAST; ...
EPOCHcount/10000 Exemplar4_OutputLAST]

error=EXEMPLAR_221(i,3)-Oe;
errorprop=error*Oe*(1-Oe);

dWeBIAS=RATE*errorprop*eBIAS;
dWce=
dWde=

RATE*errorprop*Oc;
RATE*errorprop*Od;

dWcBIAS=RATE*Oc*(1-Oc)*(errorprop*Wce)*cBIAS;
dWac=
dWbc=

RATE*Oc*(1-Oc)*(errorprop*Wce)*EXEMPLAR_221(i,1);
RATE*Oc*(1-Oc)*(errorprop*Wce)*EXEMPLAR_221(i,2);

dWdBIAS=RATE*Od*(1-Od)*(errorprop*Wde)*dBIAS;
dWad=
dWbd=

RATE*Od*(1-Od)*(errorprop*Wde)*EXEMPLAR_221(i,1);
RATE*Od*(1-Od)*(errorprop*Wde)*EXEMPLAR_221(i,2);

Wac=Wac+dWac;
Wad=Wad+dWad;
Wbc=Wbc+dWbc;
Wbd=Wbd+dWbd;
Wce=Wce+dWce;
Wde=Wde+dWde;
WcBIAS=WcBIAS+dWcBIAS;
WdBIAS=WdBIAS+dWdBIAS;
WeBIAS=WeBIAS+dWeBIAS;
Wdisplay=[Wac Wad Wbc Wbd Wce Wde WcBIAS WdBIAS WeBIAS];

n=n+1;

end;
end;

EPOCHcount
endTIME=cputime-startTIME

if PLOTTING==1
figure(1);

% % axis([-120 335 -50 300]);
%open figure window #1
%define x and y axis for figure window #1

title(['LEARNING RATE =',num2str(RATE), ' Stopping tolerance =
',num2str(STOPtolerance),' ' ...

num2str(endTIME), ' secs of CPU time ']);
xlabel('LEARNING EPOCHS');
ylabel('2-2-1 NEURAL NETWORK OUTPUT');
legend('00 input','01 input','10 input','11 input','Location','southwest');
hold on;

end;
%**
%** END 2-2-1 MAIN LOOP
%**

%** END 2-2-1 ARCITECTURE
**
%**

%**
%*************************************** BEGIN 3-3-1 ARCITECTURE
**

elseif ARCHITECTURE==2 % START IMPLIMENTING 3-3-1 ARCHITECTURE
%*** 3-3-1 INITIALIZATION *********************
%Weight Values
%A,B,C are input layer neurons
%D,E,F are hidden layer neurons
%G is output layer neuron

Wad= .4; Wae= .45; Waf= .5;
Wbd= .55; Wbe= .6; Wbf= .65;
Wcd= .7; Wce= .75; Wcf= .8;
Wdg= .85; Weg= .9; Wfg= .63;

%Bias values (MAY BE CHANGED BASED ON a concurrent SITUATION)
dBIAS= 1; WdBIAS=1;
eBIAS= 1; WeBIAS=1;
fBIAS= 1; WfBIAS=1;
gBIAS= 1; WgBIAS=1;

Exemplar1_OutputLAST=[.5 .5 .5 .5]; %just to get it started
Exemplar2_OutputLAST=[.5 .5 .5 .5];
Exemplar3_OutputLAST=[.5 .5 .5 .5];
Exemplar4_OutputLAST=[.5 .5 .5 .5];
Exemplar5_OutputLAST=[.5 .5 .5 .5];
Exemplar6_OutputLAST=[.5 .5 .5 .5];
Exemplar7_OutputLAST=[.5 .5 .5 .5];
Exemplar8_OutputLAST=[.5 .5 .5 .5];
EPOCHcount=0;n=1;

%**
%************************************* 3-3-1 MAIN LOOP *************************
%**

while ((EPOCHcount) < EPOCHcountMAX)& ...
((abs(Exemplar1_OutputLAST(4)-EXEMPLAR_331(1,4))> STOPtolerance)| ...
(abs(Exemplar2_OutputLAST(4)-EXEMPLAR_331(2,4))> STOPtolerance)| ...
(abs(Exemplar3_OutputLAST(4)-EXEMPLAR_331(3,4))> STOPtolerance)| ...
(abs(Exemplar4_OutputLAST(4)-EXEMPLAR_331(4,4))> STOPtolerance)| ...
(abs(Exemplar5_OutputLAST(4)-EXEMPLAR_331(5,4))> STOPtolerance)| ...
(abs(Exemplar6_OutputLAST(4)-EXEMPLAR_331(6,4))> STOPtolerance)| ...
(abs(Exemplar7_OutputLAST(4)-EXEMPLAR_331(7,4))> STOPtolerance)| ...
(abs(Exemplar8_OutputLAST(4)-EXEMPLAR_331(8,4))> STOPtolerance))

EPOCHcount=EPOCHcount+1;
for i=1:8

Od=1/(1+exp((-(dBIAS*WdBIAS)- EXEMPLAR_331(i,1)*Wad - EXEMPLAR_331(i,2)*Wbd -
EXEMPLAR_331(i,3)*Wcd)));
Oe=1/(1+exp((-(eBIAS*WeBIAS)- EXEMPLAR_331(i,1)*Wae - EXEMPLAR_331(i,2)*Wbe -

EXEMPLAR_331(i,3)*Wce)));
Of=1/(1+exp((-(fBIAS*WfBIAS)- EXEMPLAR_331(i,1)*Waf - EXEMPLAR_331(i,2)*Wbf -

EXEMPLAR_331(i,3)*Wcf)));
Og=1/(1+exp((-(gBIAS*WgBIAS)- Od*Wdg - Oe*Weg - Of*Wfg)));

% 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'gray',
'lightBlue', 'orange', 'darkGreen'
if i==1

Exemplar1_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'redo');
hold on;

end;
elseif i==2
Exemplar2_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'black.');
hold on;

end;
elseif i==3
Exemplar3_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'green.');
hold on;

end;
elseif i==4
Exemplar4_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'blue.');
hold on;

end;
elseif i==5
Exemplar5_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'cyan.');
hold on;

end;
elseif i==6
Exemplar6_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'magenta.');
hold on;

end;
elseif i==7
Exemplar7_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'yellow.');
hold on;

end;
else
Exemplar8_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3)

Og];
if PLOTTING==1

figure(1);
plot(EPOCHcount,Og,'blacko');
hold on;

end;
end;

Exemplars_OutputLAST=[EPOCHcount/10000 Exemplar1_OutputLAST; ...
EPOCHcount/10000 Exemplar2_OutputLAST; ...
EPOCHcount/10000 Exemplar3_OutputLAST; ...
EPOCHcount/10000 Exemplar4_OutputLAST; ...
EPOCHcount/10000 Exemplar5_OutputLAST; ...
EPOCHcount/10000 Exemplar6_OutputLAST; ...
EPOCHcount/10000 Exemplar7_OutputLAST; ...
EPOCHcount/10000 Exemplar8_OutputLAST]

error=EXEMPLAR_331(i,4)-Og;
errorprop=error*Og*(1-Og);

dWgBIAS=RATE*errorprop*gBIAS;
dWdg= RATE*errorprop*Od;
dWeg= RATE*errorprop*Oe;
dWfg= RATE*errorprop*Of;

dWdBIAS=RATE*Od*(1-Od)*(errorprop*Wdg)*dBIAS;
dWad= RATE*Od*(1-Od)*(errorprop*Wdg)*EXEMPLAR_331(i,1);
dWbd= RATE*Od*(1-Od)*(errorprop*Wdg)*EXEMPLAR_331(i,2);
dWcd= RATE*Od*(1-Od)*(errorprop*Wdg)*EXEMPLAR_331(i,3);

dWeBIAS=RATE*Oe*(1-Oe)*(errorprop*Weg)*eBIAS;
dWae=
dWbe=
dWce=

RATE*Oe*(1-Oe)*(errorprop*Weg)*EXEMPLAR_331(i,1);
RATE*Oe*(1-Oe)*(errorprop*Weg)*EXEMPLAR_331(i,2);
RATE*Oe*(1-Oe)*(errorprop*Weg)*EXEMPLAR_331(i,3);

dWfBIAS=RATE*Of*(1-Of)*(errorprop*Wfg)*fBIAS;
dWaf=
dWbf=
dWcf=

RATE*Of*(1-Of)*(errorprop*Wfg)*EXEMPLAR_331(i,1);
RATE*Of*(1-Of)*(errorprop*Wfg)*EXEMPLAR_331(i,2);
RATE*Of*(1-Of)*(errorprop*Wfg)*EXEMPLAR_331(i,3);

Wad=Wad+dWad; Wbd=Wbd+dWbd; Wcd=Wcd+dWcd;
Wae=Wae+dWae; Wbe=Wbe+dWbe; Wce=Wce+dWce;
Waf=Waf+dWaf; Wbf=Wbf+dWbf; Wcf=Wcf+dWcf;

Wdg=Wdg+dWdg; Weg=Weg+dWeg; Wfg=Wfg+dWfg;

WdBIAS=WdBIAS+dWdBIAS;
WeBIAS=WeBIAS+dWeBIAS;
WfBIAS=WfBIAS+dWfBIAS;
WgBIAS=WgBIAS+dWgBIAS;

Wdisplay=[Wad Wbd Wcd Wae Wbe Wce Waf Wbf Wcf Wdg Weg Wfg WdBIAS WeBIAS WfBIAS
WgBIAS];

n=n+1;

end;
end;

EPOCHcount
endTIME=cputime-startTIME

if PLOTTING==1
figure(1);
% axis([-120 335 -50 300]);

%open figure window #1
%define x and y axis for figure window #1

title(['LEARNING RATE =',num2str(RATE), ' Stopping tolerance =
',num2str(STOPtolerance),' ' ...

num2str(endTIME), ' secs of CPU time ']);
xlabel('LEARNING EPOCHS');
ylabel('3-3-1 NEURAL NETWORK OUTPUT');
legend('000 input','001 input','010 input','011 input','100 input','101 input','110

input','111 input','Location','southwest');
hold on;

end;
%**
%** END 3-3-1 MAIN LOOP *************************
%**
%** END 3-3-1 ARCITECTURE *************************
%**

end;

In 2020 you can you do deep learning and neural networks
using the parallel processing capabilities of graphics cards
on simple personal computers! …. Using “CUDA”

A.11 GRAPHICS CARDS, Historical Perspective
(edited by J Wunderlich PhD in 2020)

Graphics Pipeline Evolution
3D graphics pipeline hardware evolved from the large expensive systems of the early 1980s to small
workstations and then to PC accelerators in the 1990s, to $X,000 graphics cards of the 2020’s During this
period, three major transitions occurred:

1. Performance-leading graphics subsystems PRICE changed from $50,000 in 1980’s down to
$200 in 1990’s, then up to $X,0000 in 2020’s.

2. PERFORMANCE increased from 50 million PIXELS PER SECOND in 1980’s to 1 billion
pixels per second in 1990’’s and from 100,000 VERTICES PER SECOND to 10 million
vertices per second in the 1990’s. In the 2020’s performance is measured more in FRAMES
PER SECOND (FPS)

3. Hardware RENDERING evolved from WIREFRAME to FILLED POLYGONS, to FULL-
SCENE TEXTURE MAPPING

Fixed-Function Graphics Pipelines
Throughout the early evolution, graphics hardware was configurable, but not programmable by the
application developer. With each generation, incremental improvements were offered. But developers were
growing more sophisticated and asking for more new features than could be reasonably offered as built-in
fixed functions. The NVIDIAGeForce 3, described by Lindholm, et al. [2001], took the first step toward true
general shader programmability. It exposed to the application developer what had been the private internal
instruction set of the floating-point vertex engine. This coincided with the release of Microsoft’s DirectX 8
and OpenGL’s vertex shader extensions. Later GPUs, at the time of DirectX 9, extended general
programmability and floating point capability to the pixel fragment stage, and made texture available at the
vertex stage. The ATI Radeon 9700, introduced in 2002, featured a programmable 24-bit floating-point pixel
fragment processor programmed with DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point
pixel processors. This was part of a general trend toward unifying the functionality of the different stages, at
least as far as the application programmer was concerned. NVIDIA’s GeForce 6800 and 7800 series were built
with separate processor designs and separate hardware dedicated to the vertex and to the fragment processing.
The XBox 360 introduced an early unified processor GPU in 2005, allowing vertex and pixel shaders to
execute on the sameprocessor.

A.11-2 A.11 Historical Perspective and Further Reading

Evolution of Programmable Real-Time Graphics
Graphics architecture has evolved from a simple pipline for drawing wireframe diagrams to a highly
parallel design consisting of several deep parallel pipelines capable of rendering complex interactive
imagery that appears three-dimensional. Concurrently, many of the calculations involved became far
more sophisticated and userprogrammable.
In these GRAPHICS PIPELINES in GPU (Graphics Processing Unit, on Graphics card, or

“Integrated” onMotherboard)), certain stages do a great deal of floating-point arithmetic on completely
independent data, such as transforming the position of triangle vertexes or generating pixel colors. This
data independence is a key difference between GPUs and CPUs. A single frame, rendered in 1/60th of a
second, might have 1 million triangles and 6 million pixels. The opportunity to use hardware parallelism
to exploit this data independence istremendous.
The specific functions executed at a few graphics pipeline stages vary with rendering algorithms and

have evolved to be programmable. Vertex programs map the position of triangle vertices on to the screen,
altering their position, color, or orientation. Typically a vertex shader thread inputs a floating-point (x, y,
z, w) vertex position and computes a floating-point (x, y, z) screen position. Geometry programs operate
on primitives defined by multiple vertices, changing them or generating additional primitives. Pixel
fragment shaders each “shade” one pixel, computing a floating-point red, green, blue, alpha (RGBA) color
contribution to the rendered image at its pixel sample (x, y) image position. For all three types of
graphics shaders, program instances can be run in parallel, because each works on independent data,
produces independent results, and has no side effects.
Between these programmable graphics pipeline stages are dozens of fixed- function stages which

perform well-defined tasks far more efficiently than a programmable processor could and which would
benefit far less from program- mability. For example, between the geometry processing stage and the
pixel processing stage is a “rasterizer,” a complex state machine that determines exactly which pixels (and
portions thereof) lie within each geometric primitive’s bound- aries. Together, the mix of programmable
and fixed-function stages is engineered to balance extreme performance with user control over the
rendering algorithms. Common rendering algorithms perform a single pass over input primitives and
access other memory resources in a highly coherent manner; these algorithms pro- vide excellent
bandwidth utilization and are largely insensitive to memory latency. Combined with a pixel shader
workload that is usually compute-limited, these characteristics have guided GPUs along a different
evolutionary path than CPUs. Whereas CPU die area is dominated by cache memory, GPUs are
dominated by floating-point datapath and fixed-function logic. GPU memory interfaces empha- size
bandwidth over latency (since latency can be readily hidden by a high thread count); indeed, bandwidth
is typically many times higher than a CPU, exceeding 100 GB/second in some cases. The far-higher
number of fine-grained lightweight threads effectively exploits the rich parallelismavailable.

A.11 Historical Perspective and Further Reading A.11-3

Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable
graphics stages are mapped to an array of unified processors; the logical graphics
pipeline is physically a recirculating path that visits these processors three times,
with much fixed-function graphics logic between visits. Since different rendering
algorithms present wildly different loads among the three programmable stages,
this unification provides processor loadbalancing.

Unified Graphics and Computing Processors
Bythe DirectX 10 generation, the functionality of vertex and pixel fragment shaders
was to be made identical to the programmer, and in fact a new logical stage was
introduced, the geometry shader, to process all the vertices of a primitive rather
than vertices in isolation. TheGeForce 8800was designedwith DirectX 10 in mind.
Developers were coming up with more sophisticated shading algorithms, and this
motivated a sharp increase in the available shader operation rate, particularly
floating-point operations. NVIDIA chose to pursue a processor design with higher
operating frequency than standard-cell methodologies had allowed to deliver the
desired operation throughput as area-efficiently as possible. High-clock-speed
design requires substantially more engineering effort, and this favored designing
one processor, rather than two (or three, given the new geometry stage). It became
worthwhile to take on the engineering challenges of a unified processor (load
balancing and recirculation of a logical pipeline onto threads of the processor
array) to get the benefits of one processordesign.

GPGPU: an Intermediate Step
AsDirectX 9–capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9GPUs had been designed only to match
the features required by the graphics API. To access the computational resources, a
programmer had to cast their problem into native graphics operations. For example,
to run many simultaneous instances of a pixel shader, a triangle had to be issued to
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did
not have the means to perform arbitrary scatter operations to memory. The only
way to write a result to memory was to emit it as a pixel color value, and configure
the framebuffer operation stage to write (or blend, if desired) the result to a two-
dimensional framebuffer. Furthermore, the only way to get a result from one pass
of computation to the next was to write all parallel results to a pixel framebuffer,
then use that framebuffer as a texture map as input to the pixel fragment shader of
the next stage of the computation. Mapping general computations to a GPU in this
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful
of useful applications with painstaking efforts. This field was called “GPGPU” for
general purpose computing onGPUs.

A.11-4 A.11 Historical Perspective and Further Reading

GPU Computing
While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its
potential usefulness would bemuch greater if programmers could think of the GPU
as a processor. NVIDIA selected a programming approach in which programmers
would explicitly declare the data-parallel aspects of their workload.
For the DirectX 10 generation, NVIDIA had already begun work on a high-

efficiency floating-point and integer processor that could run a variety of simul-
taneous workloads to support the logical graphics pipeline. This processor was
designed to take advantage of the common case of groups of threads executing the
same code path. NVIDIA added memory load and store instructions with integer
byte addressing to support the requirements of compiled C programs. It
introduced the thread block (cooperative thread array), grid of thread blocks, and
barrier synchronization to dispatch and manage highly parallel computing work.
Atomic memory operations were added. NVIDIA developed the CUDA C/C++
compiler, libraries, and runtime software to enable programmers to readily
access the new data-parallel computation model and developapplications.

Scalable GPUs
Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horsepower by
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. There was one option—the
VGA controller. As 3D-capable accelerators appeared, the market had room for a
range of offerings. 3dfx introduced multiboard scaling with the original SLI (Scan
Line Interleave) on their Voodoo2, which held the performance crown for its time
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), first
by speed binning and packaging, then with separate chip designs (GeForce 2GTS&
GeForce 2MX). At present, for a given architecture generation, four or five separate
GPU chip designs are needed to cover the range of desktop PC performance and
price points. In addition, there are separate segments in notebook and workstation
systems. After acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in
2004, starting with GeForce 6800—providing multi-GPU scalability transparently
to the programmer and to the user. Functional behavior is identical across the
scaling range; one application will run unchanged on any implementation of an
architectural family.
CPUs are scaling to higher transistor counts by increasing the number of

constant-performance cores on a die, rather than increasing the performance of a
single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to find fourfold to
eightfold task parallelism to fully utilize these processors, and applications using
task parallelismmust be rewritten frequently to target eachsuccessive doubling

A.11 Historical Perspective and Further Reading A.11-5

of core count. In contrast, the highly multithreaded GPU encourages the use of
many-fold data parallelismand thread parallelism, which readily scales to thousands
of parallel threads on many processors. The GPU scalable parallel programming
model for graphics and parallel computing is designed for transparent and
portable scalability. A graphics program or CUDA program is written once and
runs on a GPU with any number of processors. As shown in Section A.3, a CUDA
programmer explicitly states both fine-grained and coarse-grained parallelism in
a thread program by decomposing the problem into grids of thread blocks—the
same program will run efficiently on GPUs or CPUs of any size in current and
future generations as well.

Recent Developments
Academic and industrial work on applications using CUDA has produced
hundreds of examples of successful CUDA programs. Many of these programs run
the application tens or hundreds of times faster than multicore CPUs are capable
of running them. Examples include n-body simulation, molecular modeling,
computational finance, and oil and gas exploration data processing. Although
many of these use single precision floating-point arithmetic, some problems require
double precision. The recent arrival of double precision floating point in GPUs
enables an even broader range of applications to benefit from GPUacceleration.
For a comprehensive list and examples of current developments in
applications that are accelerated byGPUs, visit CUDAZone:

https://developer.nvidia.com/cuda-toolkit w.nvidia.com/CUDA.

Trends
Naturally, the number of processor cores will continue to increase in proportion
to increases in available transistors as silicon processes improve. In addition, GPUs
will continue to enjoy vigorous architectural evolution. Despite their demonstrated
high performance on data-parallel applications, GPU core processors are still of
relatively simple design. More aggressive techniques will be introduced with each
successive architecture to increase the actual utilization of the calculating units.
Because scalable parallel computing on GPUs is a new field, novel applications are
rapidly being created. By studying them, GPU designers will discover and
implement new machine optimizations. In 2020, GPU’s have over 2000 CUDA
CORES

Further Reading
Akeley,K.and T.Jermoluk [1988].“High-Performance Polygon Rendering,”Proc. SIGGRAPH 1988 (August),
239–46.

Akeley,K.[1993].“RealityEngine Graphics.”Proc. SIGGRAPH 1993 (August), 109–16.

Blelloch, G. B. [1990]. “Prefix Sums and Their Applications.” In John H. Reif (Ed.), Synthesis of Parallel
Algorithms,Morgan Kaufmann Publishers, San Francisco.

https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/CUDA

