Wunderlich, J.T. (2003). Functional verification of SMP, MPF, and vector-register supercomputers through controlled randomness. In Proceedings
of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.

(Functional Verification of SMP, MPP, and Vector-Register

Supercomputers through Controlled Randomness

Joseph T. Wunderlich
Elizabethtown College
Computer Engineering Program

Abstract - Prototype supercomputer functionality can be
verified by comparing simulated hardware execution with
actual hardware test-program runs where each successive test-
program run includes randomly changing machine-states,
operating scenarios, and data. Increased verification is
achieved through repeated program execution. In both multi-
processor and vector-register systems, a ‘“controlled
randomness” can be used to verify the functionality of
simultaneously executing processors or functional units. This
paper discusses the selection and combining of random
number generators such that a “degree-of-randomness”
between successive or parallel program runs is controlled.
This allows computer engineers to simulate the execution of
actual software (application or system-level) in which
successive or parallel program runs may or may not involve
uncorrelated tasks. Additionally, random number generators
are selected to maximize execution speed and cycle-length,
ensure reproducibility, and when desired, best produce a
random source of numbers (i.e., to better approximate an
independent, identically-distributed source). Generators can
also be chosen for ease of implementation, the ability to run
backwards, and the ability to split the generator's cycle into
uncorrelated segments. “Backward multipliers” to allow
generators to be run in reverse can also be easily found for
some types of generators; reversibility is critical for functional
verification so that code execution can be traced backwards to
find scenarios that led to detected hardware failures. When
generators are carefully selected and combined, the
verification process can be optimized. By using this
methodology, functional verification of SMP, MPP and
vector-register supercomputers can be achieved.

TERMS

SMP = Symmetric Multiprocessing

MPP = Massively Parallel Processing

VLSI = Very Large Scale Integration

RNG = Random Number Generator

PASSGEN = RNG’s used to randomize machine-states,
operating scenarios, and data

PASSGEN() = Function to implement a PASSGEN RNG

SEEDGEN = RNG used to initialize (i.e., seed) PASSGEN’s

SEEDGEN() = Function to implement a SEEDGEN RNG

IID = Independent and Identically Distributed

__~ LCG = Linear Congruent Generator

CLCG = Combined Linear Congruent Generator

LFG = Lagged Fibonacci Generator

A = Forward multiplier for LCG's

B = Backward multiplier for LCG's

C = Additive constant for LCG'S

X{I} = Present number generated

X{I-1}= Previous number generated

Q = Special "decomposition" variable for LCG's

R = Special "decomposition" variable for LCG's

M = Modulus

M_CLCG =Modulus for CLCG

J=Lag for LFG'S (the longer one)

K = Lag for LFG'S

X{I-J}= Previous {I-J} seed from LFG seed array

X{I-K}= Previous {I-K} seed from LFG seed array

OPERT= The arithmetic operator used for the LFG (+, or *)

PERIOD = How many numbers generated before sequence
repeats (i.e., the “cycle-length”)

I. Introduction

Functional verification is part of an overall quality assurance
process for computer systems; a process that can include:

1. Functional verification programs run in a simulated
prototype-machine environment.

2. Digital and analog VLSI circuit simulation testing.

3. Functional verification programs run on top of a VLSI
circuit simulation.

4. Functional verification programs run on prototype
hardware.

5. Various instruction-mix and performance benchmark
testing.

The idea of using random numbers in test programs has
existed for 20 years; however the methodology was typically
built on the use of one simple random number generator
(RNG). The “controlled randomness” methodology described
below allows the combining of six different random number
generators for the purpose of creating test programs for
functional verification of SMP, MPP and vector-register
supercomputers (as well as uni-processor systems):

- II. Generator Properties

Typically “desirable” generator properties include:

A)

B)

0

D)

Historically proven: has been used for at least several
years in industry or academia (i.e., well tested over time).

1ID: if “good” randomness desired, produces a string of
numbers which approximate an independent and
identically distributed source (I.I.D.). Independent means
the probability of a number being generated is
independent of when others generated (i.e., no conditional
dependence). Identically distributed means all numbers
have an equal probability of being generated (ie., a
uniform distribution). A well-known generator discussed
in this paper is “Randu” which is known for poor
randomness. This is illustrated in Fig. 1. where every
successive three numbers created by the generator (i.e.,
“three-tuple”) is plotted as a point in Cartesian space. A
RNG with good randomness would show relatively no
discernable patterns.

A i

R O,

.

A

SIS

iz

FNRN Sa e i,

”
W

T s
A, v, PO b gt o

Tiewy
bl %

IR

Figure 1. Three-tuple plot of the random number
generator “Randu” showing poor randomness.

Long period (cycle): (i.e., many numbers produced before
generator starts over).

Non-overlapping segments: each program pass or parallel
thread execution causes a string (a segment) of numbers
to be generated by the pass generator (assuming the
program or thread contains some PASSGEN() 's). Non-
overlapping segments means no significant part of any
two segments will be identical; and therefore the
generator's period can be broken into non-overlapping
segments. This is only possible using the "FIB_A"
generator discussed below. However, any generator with
a large enough period will most likely produce mostly
non-overlapping segments for a typical set of program
passes or parallel thread executions. For example, a
program with 500 PASSGEN()'s using a segment of 500
numbers; if you run the program for 100,000 passes, you

E)

F)

G)

H)

Y

U]

K)

II1.

have a total of 50,000,000 numbers used. Even generators
with relatively small periods of 500,000,000 would use
only 10% of all of the numbers contained within their
period. There would be some overlapping segments since
the beginning of each segment is chosen randomly at the
beginning of each program run -- but possibly not an
undesirable amount of overlapping.

Execution speed: (both to startup and to run). Programs
with many PASSGEN() 's or long PASSGEN() targets
(e.g., a large desired string of random data) are referred to
as "LONG RUNS" below. Some generators are not well
suited for "SHORT RUNS" because of high initialization
costs.

No repeats of a number within a seed generator's cycle
(i.e.. period): since a repeating base seed means an
identical pass or parallel thread is generated (however,
since preceding and following passes or adjacent threads
are most likely different, a different scenario may be
tested). Repeating numbers are ok for pass generators --
only repeating sequences need to be avoided.

Minimal seed memory: requirements (i.e., more seeds
means more record-keeping and computational overhead).

Minimal restrictions on initial seed.

Reversibility: The seed generator must go backwards; and
the pass generator used by the PASSGEN() 'S is
sometimes desired to go backwards. Reversibility is
critical for functional verification so that code execution
can be traced backwards to find scenarios that led to
detected hardware failures.

Repeatability: is required for debugging. (Note: all of the
generators below provide repeatability; both individually
and when combined).

Appropriateness for parallel architectures: Variations of
desired randomness within or between processors (or
functional units) should be considered [3].

Evaluation of Seed and Pass Generators

The following seed and pass generators can be specified as
part of the functional verification methodology:

(#1) to (#4) can be used as either a seed or pass
generator.

(#5) and (#6) can only be used as a pass generator
since they are not yet reversible.

Generator qualities have been subjectively graded below from
(A+) to (F) based on an analysis of algorithm execution times,
and an assessment of “spectral data” and other selection
criteria from relevant literature [1 to 19]:

1) "RANDU"

FORWARD DESIGNATION: LCG(65539,0,2"32)
BACKWARD DESIGNATION: LCG(477211307,0,2732)

IID(OF 32-BIT WORDS) ..ceeveecccns D
PERIOD: s s sonvomaneosaonnnsssnsoe 2729
OVERLAPPING SEGMENTS..........000. YES
STARTUP SPEED. csccscocnssssssswnnis A+
"SHORT" RUN SPEED...c.cuveeevaowmn A+
"LONG" RUN SPEED....ccceeeeecccans A+
REPEATS NUMBER WITHIN PERIOD...... NO
NUMBER OF SEEDS....cccocececcscsas 1

RESTRICTIONS ON INITIAL SEED..NOT 0 OR EVEN
NOTES: Derived from the power residue
method in 1968.

2) "IMPRV"
(AN IMPROVED RANDU-TYPE GENERATOR)

FORWARD DESIGNATION: LCG(71365,0,2732)
BACKWARD DESIGNATION: LCG(814217229,0,2732)

IID(OF 32-BIT WORDS) «.eceveeceans B~
PERIOD: ccwmas s sissamatssspmpmons s oo 2729
OVERLAPPING SEGMENTS.............. YES
STARTUP SPEED. ..cececcococomoeseons A+
"SHORT" RUN SPEED....... GRS EE & e A+
"LONG" RUN SPEED......cccetieecens A+
REPEATS NUMBER WITHIN PERIOD...... NO
NUMBER OF SEEDS......ccceeeeeeccns 1

RESTRICTIONS ON INITIAL SEED..NOT 0 OR EVEN

3) "MINSTD"
("MINIMUM-STANDARD" VER. #2)

FORWARD DESIGNATION: 1LCG(48271,0,(2731-1))
BACKWARD DESIG.: 1LCG(1899818559,0, (2731-1))

IID(OF 32—~BIT WORDS) .ecoveccensososs B
PERIOD: s i s sssaians s onmanese snsiages 2431
OVERLAPPING SEGMENTS.............. YES
STARTUP SPEED.....cccceeeacnceosns A
"SHORT" RUN SPEED....cccoceeccccns B
"LONG" RUN SPEED....cccccceacccncn B
REPEATS NUMBER WITHIN PERIOD...... NO
NUMBER OF SEEDS......ctceeeeeacnns 1
RESTRICTIONS ON INITIAL SEED...... NOT O

NOTES :
FORWARD: Using decomposed form to
prevent 32-bit overflow with:
0=44488,R=3399
BACKWARD: If 64-bit arithmetic is not
available, must use simulated 64-bit
arithmetic to handle 32-bit overflow

since Q is not greater than R for
reverse multiplier.

4) "CLCG"
(COMBINES TWO LCG'S)

GENERATOR #1 FORWARD DESIGNATION:
LCG(40014,0,2147483563)
GENERATOR #1 BACKWARD DESIGNATION:

LCG (2082061899, 0,2147483563)
GENERATOR #2 FORWARD DESIGNATION:

LCG(40692,0,2147483399)
GENERATOR #2 BACKWARD DESIGNATION:

LCG(1481316021,0,2147483399)
M CLCG = 1

IID(OF 32-BIT WORDS)cceec.nn B+
PERIOD s nwsiw s s animms s snbns i a@is 2763
OVERLAPPING SEGMENTS.......0ccee.s YES
STARTUP SPEED....ccccceencnccancas A
"SHORT" RUN SPEED.....cccceeenecns B=
"LONG" RUN SPEED.....ccetececnasns B=
REPEATS NUMBER WITHIN PERIOD...... YES
NUMBER OF SEEDS......cccceeccanenn 2
RESTRICTIONS ON INITIAL SEED...... NOT 0

NOTES:

FORWARD: Using decomposed form to

prevent 32-bit overflow with:
Q1=53668,R1=12211
Q2=52774,R2=3791

BACKWARD: If 64-bit arithmetic is not

available, must use simulated 64-bit

arithmetic to handle 32-bit overflow

since Q is not greater than R for

reverse multiplier.

During initialization, the base seed
created by the SEEDGEN is used as the
initial seed for both constituent
generators.

5) "FIB M"
(LAGGED FIBONACCI USING MULTIPLICATION)

FORWARD DESIGNATION: LFG(55,24,2732,%)
BACKWARD DESIGNATION: NOT YET DERIVED

IID(OF 32-BIT WORDS)voveennnn A+
PERIOD s svmuinic s wusmmmnin « Asnsdd @ @R 2783
OVERLAPPING SEGMENTS.............. YES
STARTUR SPEED. : ssassns s s nemmesasis C+
"SHORT"™ RUN SPEED.......ccceveeees B-
"LONG" RUN SPEED....c.cccccecaanans A-
REPEATS NUMBER WITHIN PERIOD...... YES
NUMBER OF SEEDS....cieceeeeeeeenns 55
RESTRICTIONS ON INITIAL SEEDS...SEE NOTES

NOTES: Two seeds of the 55 seeds in the
seed table must be updated each
PASSGEN () invocation, and the seed table

must be initialized for each pass; The
initialization requires filling the seed
table with random values using another
generator, then make all entries odd.

6) "FIB A"
(LAGGED FIBONACCI USING ADDITION)

FORWARD DESIGNATION: LFG(521,168,2"32,+)
BACKWARD DESIGNATION: NOT YET DERIVED

IID(OF 32-BIT WORDS) «v:cvsoescsss A
PERIOD: s vo v niwis nassmnssssiooweaionss 22531
OVERLAPPING SEGMENTS.............. NO
STARTUP SPEED. .. sconswunss ssasmnianss D
"SHORT" RUN SPEED..cecccsoconososss C+
"LONG" RUN SPEED........cciuuen... A~
REPEATS NUMBER WITHIN PERIOD...... YES
NUMBER OF SEEDS...cceceeeeccccasns 521
RESTRICTIONS ON INITIAL SEEDS...SEE NOTES

NOTES: Two of the 521 seeds in the seed
table seeds must be updated each
PASSGEN () invocation, and the seed table
must be initialized for each pass; The
initialization requires filling the seed
table with random values using another
generator, then to get a unique non-
overlapping segment of the generator's
cycle (i.e., to get the most uncorrelated
program passes or parallel threads), the
initial array must also be put into a
"CANONICAL FORM". This is only possible
for certain J,K pairs and is made by
shifting left (zero into the LSB), clear
the sign bit, then zero the entire last
entry, then the LSB for one or two
special entries is set to one:

JK-PAIR ENTRY
842 1
5;3 2,3
10,7 8
17:5 11
35,2 1
55,24 12
71,65 2
98 21 2;3

127,97 22
158,128 64

521,168 88 (Tested J,K PAIR)

IV. Summary of Generators:

RANDU IMPRV MINSTD CLCG FIB_M FIB_A

11D (“randomness”) D B- B B+ A+ A
PERIOD (cycle) 2029 2A29 231 2763 283 27531
OVERLAPPING Y Y Y Y Y N
STARTUP SPEED A+ A+ A A c+ D
"SHORT" RUN SPEED A+ A+ B B- B- C+
"LONG" RUN SPEED A+ A+ B B- A- A
REPEATS IN PERIOD N N N Y Y Y
NUMBER OF SEEDS 1 1 1 2 55 521

SEED RESTRICTIONS notO, notO, notO, not0, MANY MANY
odd odd

CAN GO BACKWARDS Y Y Y Y N N

Note: Reverse multipliers where found for the linear
congruent generators by simply testing all numbers within
each generator’s period (i.e., does one step backwards using a
candidate reverse multiplier result in a step equivalent to that
of taking one step forward using the forward multiplier.)

V. Controlled Randomness

The “degree-of-randomness” between successive or parallel
program runs is controlled through the selection of seed and
pass generators. For example,

For filling large data areas or for programs with few
PASSGEN()’s,
Choose:

SEEDGEN="MINSTD"

PASSGEN="IMPRV"
for very fast, reversible PASSGEN()’s, a single seed, and “ok”
randomness; but small period and overlapping segments.

For programs with many PASSGEN()’s (some reversible),
Choose:

SEEDGEN="MINSTD"

PASSGEN="CLCG"
for very random, reversible PASSGEN()’s, and big period; but
overlapping segments and two seeds to handle.

For programs with many PASSGEN()’s (none reversible),
Choose:

SEEDGEN="MINSTD"

PASSGEN="FIB_A"
for the ultimate in non-correlated passes or parallel streams
(i.e., very good IID and non-overlapping segments); but not
reversible PASSGEN()’s and requires 521 seeds.

For any program where intentional lack of randomness and
high correlation between passes or parallel streams is desired,

Choose:

SEEDGEN="RANDU"

PASSGEN="RANDU"
This can often more accurately simulate actual code execution
(i.e., lack of randomness and interdependence between
successive passes or parallel threads may sometimes be a good
thing!).

~. VI. Conclusions

Prototype SMP, MPP, and vector-register supercomputer
functionality can be verified by comparing simulated hardware
execution with actual hardware test-program executions where
each successive or parallel test-program run includes
randomly changing machine-states, operating scenarios, and
data. The selection and combining of random number
generators, such that a “degree-of-randomness” between
program runs or parallel threads is controlled, allows computer
engineers to simulate the execution of actual software in
which program execution may or may not involve
uncorrelated tasks. When generators are carefully selected and
combined, verification can be optimized.

References

[1] Fang, K.-T., Hickernell, F.J., and Niederreiter, H. (editor),
“Monte carlo and quasi-monte carlo methods 20007,
Springer-Verlag, Heidelberg New York, 2002.

[2] Gentle, J. E., “Random number generation and monte
carlo methods (statistics and computing)”, Springer-Verlag,
Heidelberg New York, 1998.

[3] Deng, L.-Y., and Gentle, J. E., “Lecture 4: parallel
random number generation ”, on-line lecture:
www.math.ntu.edu.tw/talkdata/021205/1.pdf. 2002.

[4] Niederreiter, H., “New developments in uniform
pseudorandom number and vector generation”, In
Niederreiter, H. and Shiue, P.J.-S., editor(s), Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, volume
106 of Lecture Notes in Statistics. Springer-Verlag,
Heidelberg New York, 1995.

[5] Makino, J., “Lagged-Fibonacci random number
generators on parallel computers”, Parallel Computing, vol.
20, no. 9: pp. 1357-1367, 1994.

[6] Pryor, D. V., et. al., “Implementation of a Portable and
Reproducible Parallel Psuedorandom Number
Generator”, in Proc. of IEEE Int'l Conf. on Supercomputing,
pp- 311-319, 1994, Washington, D.C..

[7] Marsaglia, G. and Zaman, A., “Some portable very-long
period random number generators”, Computers in Physics,
vol. 8, no. 1: pp. 117-121. 1994.

[8] Press, W. and Teukolsky, S. A., “Portable random
number generators”, Computers in Physics, vol. 6, no. 5: pp.
117-121. 1992.

[9] Law, A. M. and Kelton, W. D., “Simulation modeling
and analysis”, 2™ ed., McGraw-Hill, Boston, MA: 1991.

[10] Anderson, S.L.: “Random number generators on
vector supercomputers and other advanced architectures”,
SIAM Rev., 32: pp. 221-251, 1990.

[11] L'Ecuyer, P., “Random numbers for simulation”,
Comm. ACM, vol. 33, no.10: pp. 85-97, 1990.

[12] Carter, D. G.: “Two fast implementations of the
“minimal standard” random number generator”, Comm.
ACM, vol. 33, no.1: pp. 87-98, 1990.

[13] Lewis, P.A.W. and Orav, E. J., “Simulation methods for
statisticians, operations analysts and engineers”,
Wadsworth & Brooks/Cole, Pacific Grove, CA: 1989.

[14] Maclaren, N. M., “The generation of multiple
independent sequences of pseudorandom numbers”, J.
Appl. Statistics, vol. 38, no.2: pp. 351-359, 1989.

[15] Park, S.K. and Miller, W. M., “Random number
generators: good ones are hard to find”, Comm. ACM, vol.
31, no.10: pp. 1192-1201, 1988.

[16] Altman, N.S., “Bit-wise behavior of random number
generators”, SIAM vol. 9, no.5: pp. 941-949, 1988.

[17] L'Ecuyer, P., “Efficient and portable combined
random number generators”, Comm. ACM, vol. 31, no.6:
pp- 85-97, 1988.

[18] Marsaglia, G., “A current view of random number
generators”, In Billard, L., editor(s), Computer Science and
Statistics: The Interface, pp. 3-10. Elsevier Science Publishers
B.V., Amsterdam, 1985.

[19] Knuth, D.E., “The Art of Computer Programming,”,
vol. 2: Seminumerical Algorithms. Addison-Wesley, Reading,
MA, 2nd edition, 1981.

Dr. JOSEPH T. WUNDERLICH

Dr. Wunderlich is an Assistant Professor of Computer Science
and Computer Engineering at Elizabethtown College.
Previously, he worked for Purdue University as an Assistant
Professor and for IBM as a researcher and hardware
development engineer. Dr. Wunderlich received his Ph.D. in
Electrical and Computer Engineering from the University of
Delaware, his Masters in Engineering Science/Computer
Design from The Pennsylvania State University, and his BS in
Engineering from the University of Texas at Austin.

Functional Verification of SMP, MPP,
and Vector-Register Supercomputers
through Controlled Randomness

N2\
J. T. Wunderlich, Ph.D.
Elizabethtown College

Elizabethtown, PA
Computer Engineering Program

| L
Quality Assurance in M

Computer Design ~ ~=>

Functional verification on simulated prototype
machine

Digital & analog VLSI circuit simulation testing

¢ Functional verification on VLSI circuit
simulation

« Functional verification on prototype hardware

» Instruction-mix and performance benchmark
testing

Controlled Randomness

« Random numbers in test programs for 20
years

« Method presented: Allow combining six
different random number generators

Various Platforms

« Uni-processor
o SMP (Symmetric Multiprocessing)

« MPP (Massively Parallel Processing)
* Vector-register

Random Number Generators
Terminology

* RNG = Random Number Generator

e PASSGEN = RNG's used to randomize
machine-states, operating scenarios, and
data

o SEEDGEN = RNG used to initialize (i.e., seed)
PASSGEN's

e PERIOD = How many numbers generated
before sequence repeats (i.e., "cycle-length™)

Randomized Programs

U, = Randomly generated nunber

Y/ m
@a "PASS™ generator
RANDOMLY INITIALIZE ALL DATA
USED BY PROGRAM (using Uy 's)

RANDOMIZE ALL DECISION CRITERIA
USED TO CONTROL PROGRAM FLOW

EITEITETET
)

B Fal Bl

“Good” Random Number

Generator
« Historically proven » No repeats of a number within
« IID (Independent seed generator's cycle
and Idetically * Minimal seed memory
Distrbuted) « Minimal restrictions on initial

Long period (cycle) seed
Non-overlapping * Reversibility
segments Repeatability

» Execution speed
g

Choosen Generators

e RANDU (Linerar Congruent Generator)

e IMPRV (Linerar Congruent Generator)

e MINSTD (Linerar Congruent Generator)

e CLCG (Combined Linear Congruent Generators)
« FIB_M (Lagged Fibonacci using Multiplication)
e FIB_A (Lagged Fibonacci using Addition)

PARALLEL F e
E Eu mium EXECUTION NUMBER 1 I
e .
“ - —E R B
C El Bl B B B
U iia
i "
I ’—'-
v ROGRAM EXECUTION NUMBER N
o) [|
N Fe-ErErErEr
B] B Fa Fa
“Bad” Random Number
Generator
Summary of Generators
RANDU IMPRV MINSTD CLCG FIB_M FIB_A
11D (‘randomness”) D B- B B+ A+ A
PERIOD (cycle) 2/29 2029 2°31 2063 2783 2531
OVERLAPPING Y Y Y Y Y N
STARTUP SPEED A+ A+ A C+ D
"SHORT' RUN SPEED A+ A+ B- B- (o 3
B- A- A-

REPEATS IN PERIOD N N Y Y

A

B

"LONG" RUN SPEED A+ A+ B
N Y

NUMBER OF SEEDS 1 1 1 2 55 521
SEED RESTRICTIONS notO, notO, not0, nctO, MANY MANY

odd odd
Y

CAN GO BACKWARDS Y Y b d N N

Controlled Randomness

« The "degree-of-randomness" between
successive or parallel program runs is
controlled through the selection of seed and
pass generators

For filling large data areas or
for programs with few
PASSGEN's

e Choose:
o SEEDGEN="MINSTD"
e PASSGEN="IMPRV"

o for very fast, reversible PASSGEN's, a single
seed, and "ok" randomness; but small period
and overlapping segments

(B

X

For programs with many
PASSGEN's (some reversible)

e Choose:
o SEEDGEN="MINSTD"
o PASSGEN="CLCG"
« for very random, reversible PASSGEN's, and
big period; but overlapping segments and
two seeds to handle
ﬁ@?\

For programs with many
PASSGEN's (none reversible)

» Choose:

o SEEDGEN="MINSTD"
« PASSGEN="FIB_A"

« for the ultimate in non-correlated passes or
parallel streams (i.e., very good IID and non-
overlapping segments); but not reversible
PASSGEN's and requires 521 seeds

62@‘.‘\

For intentional lack of
randomness and high
correlation between passes or
parallel streams

» Choose:

» SEEDGEN="RANDU"
« PASSGEN="RANDU"

« May more accurately simulate actual code
execution (i.e., lack of randomness and
interdependence between successive passes or
parallel threads is sometimes a good thing!)

IBM Hardware Development Engineer and Researcher (1996, 97, and 98)
IBM S/390 Hardware Development Lab, Poughkeepsie, NY

+ Reviewed specifications for new Symmetric Multi-Processor (SMP) mainframe-supercomputer architectures (jointly developed with IBM
Germany) and engineered systems-level software and part of a custom operating system (SAK) to "stress" features and force hardware failures
through pseudo-random generation of machine-states and operating scenarios. These SMP machines were designed for up to 20 processors and
could be divided into 15 separate logical partitions as well as scaled to 512 processors via a dynamic interconnect facility (IBM Parallel
Sysplex). Programs ran in three environments: VLSI circuit simulation, initial hardware test, and manufacturing. 64-bit processing (address
and data paths) was introduced during this time requiring simulating 64-bit arithmetic and virtual-address formation to test simulated 64-bit
prototype architectures using 32-bit machines; these prototypes were released as the "IBM eServer zSeries" (now called zEnterprise)

¢ My research included:
1. Microprocessor branch-prediction verification strategies in a multiprocessor environment.
2. Random number generator (RNG) theory for hardware verification with seven different correlated random number generators.

+ My development projects included creating 20,000 lines of high-level language (PL/X) and S/390 assembly code including operating system
application interfaces (API's). My RNG API code was also translated into C for an AIX (IBM's UNIX) environment for IBM AS/400
minicomputers and RS-6000 workstations (the predicessor of POWER?7 supercomputers like "Watson") requiring supervision of one engineer
in Austin, TX via the IBM intranet. My other development projects included verification programs for cache coherency, virtual addressing,
space-switching, linkage control, and 125 new IEEE floating-point instructions (to supplement the existing IBM Hex floating-point
instructions). All ~1400 IBM S/390 instructions were tested (including vector-register instructions from previous add-on vector register unit)

= A patent process was initiated for my random number theory and API development.
e 0 PARALLEL ENTERPRISE SERVERS

e S S el W Loregero | Mortex-J
| Pocessoc (TG [op

‘/ i

A 0%

6

Us
ws | | 6PUs
36 chups

ONEAN\ T BOSR
i

mo So0s i
Coche xe umos
Gogecrp (75 ?ZV 64 tmes

\ cmos
\ & % Substrnte

) 4
= o
Frbesdaoe Top e Gack
Planar Board | | 10 Chs ane 3 AP

igure 2.9. 9672 Model R3 CMOS microprocessor packaging advancage

COrPERR uF 1> 10 LP)

el Aro 2 SAPS
g"fg‘ <lle I [
‘7) shsisllizl=ll=]l
| 1= =3 i
:" Sy o 127 ey ‘ e
v | = [5)[c]
; Sandar o Modle E] E @ = e[alarala] @@
| | EENE @ &
; ez EEEEEE =B |
| e [6[c] |
[e | [o)s] =
i Dt | Processor Planar Board

>\»1A27\Mo}6'|e 1 Io CATP 10T

e |
Figure 2‘/“” % ,’fwﬂ 05 miccoprocessor module and card. /} Figure 2.13. 9872 MGHElR3/EMOS] microprocessor module and board,

——

——
-
/' Model Memory / Paalll ESCON Total
Mita a

hannels Channels Channels
Min/Max (2)

Min/Max (1)

RAZ 1-Way processor 126VB/1GE 3148 ane 64
R12 1-Way processor 113268 39 41128 128
R22 2-Way processor /25613268 ¥%6 41128 128
R323-Woy processo(’ 25632GB 96 4128 128
RA24-Way proceséor 25613/2G8 196 41128 128
‘ﬂsis»w:m €ssor 25EMEGB 3196 41128 128

K Memory Parallel ESCON Total
v MinMax Channels Channels Channels
) Min/Max (1) Min/Max (2)

R835-Way processor S12V3/4G8 39 anzs 128
\ RE36-way processor 123408 396 W @

\ RT3 7-Way processor S123/4G8 396 ans2 192
\ RE3 B-Way processor S12M3/4GB 3196 41192 192
\ RX3 10-Way processor S12MS/4GB 396 ane2 192

Note:

(1) Paralel Channel Increme~= by 3
{2) ESCON Channel Increme=s by 4 \
Couping Uinks 2 2 '
Sof A (5Lowen /
J 70 015TEIB VTS Figure 3.5, W9672R2ATIRAAcmory and channel options. = .
-C . A & oLt §TE16 v >
RLCR s =
. A
s z
¥ »RT LD
e R
gl [
ol 1l o N “ Oasen Y
)) 210
T ‘ X “bmento o 083 \ : A
2kl G i A . 308173084 > SEEEP VP O 2090 opeL \BO S &
T 8 A))| (3080 "120€ -s00) s
Lo /X R Family RX2 Farmily REBmil
i l - %) (o0 qoos-eoes] W ooo: B ocor 5
R 1-1s B 05-11
! | ST —— D R 1520 Rz 17-21
i [z == RAL 19-28 R32 2331
] ! [Ce221211] REI 22-35 R42 2.9-4.0
: [om— RG24 RS2 3449
s e BAR -t
s Figure 3.3. /390 Model R
A 1B 3090-600 30d the low

| 2
O
(Va)
L

| O

| o

y LU

| —

=
o
=

| O

i O

8
L

| O
=

%]

" Random Number
Generator

J. Wunderlich was a researcher at IBM before joining
Purdue University as an Assistant Professor

His IBM research was on quality
control of S/390 Multi-processor
SMP supercomputers

See more here:
hitp://users.etown.edu/w/wunderijt/home IBM.html

Quality Assurance
in Computer Design

 Functional verification on simulated prototype
machine

« Digital & analog VLSI circuit simulation testing

» Functional verification on VLSI circuit
simulation

» Functional verification on prototype hardware

* |Instruction-mix and performance benchmark
testing

Quality Assurance in Computer Design

PROGRAM EXECUTION

RANDOMLY INITIALIZE ALL DATA
USED BY PROGRAM (using U, 's)

i

RANDOMIZE ALL DECISION CRITERIA
USED TO CONTROL PROGRAM FLOW

(using U; 's)

= Randomly generated number

FROM: Waunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-register supercomputers through controlled _randomness. In
Proceedings of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.

and: Waunderlich, J.T. (1997). Random number generator macros for the system assurance kernel product assurance macro interface. Systems

Programmer’s User Manual for IBM S/390 Systems Architecture Verification. Poughkecpsic. NY.

Quality Assurance in Computer Design
Controlled Randomness IDEAL OEER Ve
IDEAL GENERATOR
¢ (IID) Independent AND Identically Distributed
o Identically Distributed: all numbers have equal probability of occurring

« Independent: probability of number being generated is independent of when other
numbers generated. And therefore, P(A,B, ... n)=P(A) *P(B) *...” P(n)

* LONG PERIOD (i.e., numbers generated before repeating)
» WELL TESTED

¢ FAST

* REPRODUCIBLE

* REVERSIBLE

o EASILY IMPLEMENTED (machine dependent)

» "SPLITTABLE"
FROM: Wunderlich, J.T.(2003). Functional verification of SMP, MPP, and vector-register supercomputers through controlled _rand s. In
Pr 1gs of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Waunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro_interface. Systems

Programmer’s User Manual for IBM S/390 Systems Architecture Verification, Poughkeepsic, NY.

Quality Assurance in Computer Design
RANDOM NUMBER GENERATORS
Programmers have the option of using seven different random number

generators for "PASSGEN() 'S" (i.e., ?GENBITS, ?GENRNG, ?GENCHAR,
?GENDEC, and ?GENFLOAT); And four different generators for ?GENSEED.

Below is the rationale for which to choose.

TERMINOLOGY:

SEEDGEN= Random number generator used for ?GENSEED (i.e. the
"seed generator" used as the ?GENSEED ALGORITHM)

PASSGEN= Random number generator used for ?GENBITS,?GENRNG,
?GENDEC,?GENCHAR, AND ?GENFLOAT. (i.e.,the "pass
generator")

LCG= Linear Congruent Generator

CLCG= Combined Linear Congruent Generator

LFG= Lagged Fibonacci Generator

A= Forward multiplier for LCG's
B= Backward multiplier for LCG's
C= Additive constant for LGS e
FROM: Wunderlich, J.T. (2003). Functional verification_of SMP. MPP, and vector-register supercomy s through controlled randomness, In
P 1gs of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Waunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro interface. Systems

Programmer's User Manual for IBM $/390 Systems Architecture Verification. Poughkeepsic. NY.

Quality Assurance in Computer Design

X{I}= Present seed

X{I-1}= Previous seed
= Special "decomposition"” variable for LCG's
= Special "decomposition" variable for LCG's

M= Modulus
M_CLCG= Modulus for CLCG
J= Lag for LFG'S (the longer one)

= Lag for LFG'S
X{I-J}= Previous {I-J} seed from LFG seed array
X{I-K}= Previous {I-K} seed from LFG seed array
OPERTR= The arithematic operator used for the LFG (+,0R *)
PERIOD= How many numbers generated before sequence
repeats (i.e. the cycle-length)

FROM: Wunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-register supercomputers through controlled randomness. In
Proceedings of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Wunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro interface, Systems

Programmer’s Uscr Manual for IBM S/390 Systems Architecture Verification, Poughkeepsic. NY.

Quality Assurance in Computer Design

Controlled Randomness Execution oSl ot

INITIAL

L aE

Uia Ui,

FROM: Waunderlich, J.T. (2003). Functional verification of SMP. MPP, and vector-register supercomputers through controlled _randomness. In
P dings of IEEE South on, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Wunderlich, J.T. (1997). Random number generator macros for the system assurance kernel product assurance macro interface. Systems

P er's User Manual for IBM S/390 Systems Architecture Verification. Pou; sic, NY.

Quality Assurance in Computer Design

.SYSTE.\‘I cLOCK Parallel Program Execution
Vo)

E] Program Execution Number |
o —~EEl BB
v l

- Ui Uiy Ui 1

1

Program Execution Number N

o888

i Ui,

H
?
v

“i=3

SEER GENERATOR
: - G =PASS GENERATOR
FROM: Wunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-register supercomputers through controlled randomness. In
P dings of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Waunderlich, J.T. (1997). Random number generator macros for the system assurance kernel product assurance macro interface. Systems
Pre r's User Manual for IBM S/390 Svstems Architecture Verification. Pou; sic, NY.

™

Quality Assurance in Computer Design

Controued Randomness SEED GENERATOR vs. PASS GENERATOR

SEED GENERATOR vs. PASS GENERATOR

SEED GENERATOR
PERIOD : MAKES NUMBER OF DIFFERENT PASSES. SMALLER FOR MORE
PASS CORRELATION.
RANDOMNESS: LESS IMPORTANT THAN FOR PASS GENERATOR. IF
DIFFERENT THAN PASS GENERATOR, OVERLAP MINIMIZED.
SPEED: LESS IMPORTANT THAN FOR PASS GENERATOR.
REVERSIBILITY: NEEDED FOR DEBUGGING

PASS GENERATOR
PERIOD: IF EVENLY DIVISIBLE BY NUMBER OF PASS GENERATOR
INVOCATIONS IN A PASS, FIRSTPASS WILL REPEAT WHEN PERIOD IS
REACHED.
RANDOMNESS: CRITICAL FOR NO CORRELATION BETWEEN PASSES, AND
WITHIN PASSES. NO OVERLAP YIELDS BEST RANDOMNESS.
SPEED: MOST IMPORTANT WHEN CREATING LARGE ARRAYS OF RANDOM
DATA. INITIALIZATION TIME MORE COSTLY FOR SMALL PROGRAMS.
REVERSIEILITY: USED INFREQUENTLY

FROM: Wunderlich, J.T. (2003). Functional verification of SMP., MPP, and vector-register supercomy s through controlled _randomness, In
P 18s of IEEE South ‘on, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Waunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro interface, Systems

Programmer’s User Manual for IBM /390 Systems Architecture Verification. Poughkeepsic, NY.

Quality Assurance in Computer Design

Controlled Randomness SELECIED CENFREES o

SELECTED GENERATORS FOR IBM (by J. Wunderlich, 1997)

SEED GENERATORS

NUMBER SPEED

CODE OF RANDOM (initial/ CAN GO
NAME SEEDS PERIOD QUALITY? running) BACKWARD
OLDGSEED 1 2426 = A/B e
LCGPRIME 1 2231 B A/B Y

(DEFAULT)
PASS GENERATORS

NUMBER RANDOM SPEED

CODE OF QUALITY/ (initial/ CAN GO
NAME SEEDS PERIOD OVERLAP? running) BACKWARD
OLDLCG32 2L 2029 D/Y A+/A+ Y

(DEFAULT)
NEWLCG32 1 2529 B-/Y A/A Y
COMBOLCG 2 2763 B+/Y A-/B- X
FIBOMULT 55 2483 A+/Y C+/A- N
FIBOPLUS 521 24531 A/N D/A N

NOTE: ALL GENERATORS WELL TESTED(EXCEPT ULDGSEED)
NOTE: FOR "CONTROLLED RANDOMNESS', OLDGSEED,LCGFRIME,OLDLCG32,AND
NEWLCGZZ CAN BE SPECIFIED AS BOTH SEED AND PASS GENERATORS

FROM: Wunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-register supercomputers _through controlled _rand s. In
Proceedings of IEEE SoutheastCon. Ocho Rios. Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: ‘Wunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro interface. Systems

| Programmer’s User Manual for IBM S/390 Systems Architecturc Verification, Poughkeepsic. NY.

Quality Assurance in Computer Design
"CONTROLLED RANDOMNESS"
3K 3K 3K 3K 3K 3K K 3K KK KK KKK K K KK K KK XK
The overall "RANDOM BACKBONE" of a succession of passes can be
controlled through the selection of seed and pass generators.
For example,
For filling large data area's or
for programs with few PASSGEN() 'S,
Choose: SEEDGEN="MINSTD"
PASSGEN="IMPRV"
for very fast, reversible passes, a single seed, and
ok randomness; but small period and overlapping segments.
For programs with many PASSGEN() 'S (some reversible),
Choose: SEEDGEN="MINSTD"
PASSGEN="CLCG"
for very random, reversible PASSGEN() 'S, and big period; but
overlapping segments and two seeds to handle.

FROM: Wunderlich, J.T. (2003). Functional verification of SMP. MPP. and vector-register supercomputers through controlled _rand s. In

Proceedings of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Waunderlich, J.T. (1997). Random number gencrator macros for the svstem assurance kernel product assurance macro interface. Systems

Programmer’s User Manual for IBM S/390 Systems Architccture Verification, Poughkeepsic. NY.

Quality Assurance in Computer Design
For programs with many PASSGEN() 'S (none reversible),
Choose: SEEDGEN="MINSTD"
PASSGEN="FIBP"
for the ultimate in non-correlated passes (i.e.,very good
word independence and non-overlapping segments); but not
reversible PASSGEN() 'S and 521 seeds.

For any program where intentional lack of randomness and high
correlation between passes is desired,
Choose: SEEDGEN="0OGSD"
PASSGEN="0OGSD"
OR
Choose: SEEDGEN="RANDU"
PASSGEN="RANDU"
This may closely simulate actual code execution (i.e.,lack
of randomness and interdependence between passes may
sometimes be a good thing!).

FROM: Wunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-register supercomputers through controlled _rand. s. In
P dings of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: ‘Wunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro interface. Systems

Programmer’s User Manual for IBM S/390 Systems Architecture Verification, Poughkeepsic. NY.

Quality Assurance in Computer Design

Controlled Randomness API CODE EXAMPLES

API’s developed by J. Wunderlich, 1997

EXAMPLE USE OF J. Wunderlich API's by System’s level programmers:

SEED GENERATOR ("LCGPRIME"):

FORWARD: Gs: V,= [(48271* V,,) + 0] mod (2%'- 1)
BACKWARD: Gs: V, = [(1899818559" V, ,) + 0] mod (2%'- 1)

PASS GENERATOR ("FIBOPLUS"):
G: U;= [U; 5 + Upyg0] mod(2%)

APl CODE SYNTAX:
?GENSEED [SEEDGEN (XSEEDGEN)] [PASSGEN (XPASSGEN)]

PASSGEN() **, St e e TR . [PASSGEN (XPASSGEN)]
where *** jis BITS CHAR,DEC, FLOAT or RNG ¥
FROM: Wunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-register supercomputers through (nnllnllul xuldnnuu\\ In

Proceedings of IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Press.
and: Waunderlich, J.T. (1997). Random number generator macros for the system assurance kernel product assurance macro interface. Systems
Programmer’s User Manual for IBM $/390 Systems Architecture Verification, Poughkeepsic, NY.

Quality Assurance in Computer Design

V
o API CODE EXAMPLE
Eﬂ\' Vi SEED GENERATOR

if it PROGRAM EXECUTION NUMBER 1 ("LCGPRIME"):

g Vi Viaer FORWARD:
S g o oo S| e R Gs: V,= [(48271°V,,) + 0] mod
v (2. 1)
l—> i —I _l BACKWARD:
Gs: V,= [(1899818559° V.,) + 0]
55 | \ Y mod(2.1)
G l»i-, Uiy U. i
‘, PASS GENERATOR
I > Via e ("FIBOPLUS"):
E d e I G: U= [U, 50 % Uiyes] mod(232)

E__’\-rl

PROGRAM EXECUTION NUMBER N

Vi U g e e SRl
FROM: Wunderlich, J.T. (2003). Functional verification of SMP, MPP. and vector-register supercomputers through controlled _rand . In
Pr dings of IEEE South Con, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE Prcss.
and: Waunderlich, J.T. (1997). Random number generator macros for the svstem assurance kernel product assurance macro_interface. Systems

Programmer’s User Manual for IBM S/390 Systems Architecture Verification. Pou; sie, NY.

Read more here:

Waunderlich, J.T. (2003). Functional verification of SMP, MPP, and vector-
register supercomputers through controlied randomness. In Proceedings of
IEEE SoutheastCon, Ocho Rios, Jamaica, M. Curtis (Ed.): (pp. 117-122). IEEE
Press.

Wunderlich, J.T. (1997). Random number generator macros for the system
assurance kernel product assurance macro interface. Systems Programmer's
User Manual for IBM S/390 Systems Architecture Verification, Poughkeepsie,
NY.

FILE: JTEXT

J3 Al (WUN191) 06/10/98 17:28:59

RANDOM NUMBER GENERATORS

Programmers have the option of using seven different random number
generators for M"?GENX*'SY™ (i.e., ?GENBITS, ?GENRNG, ?GENCHAR, ?GENDEC,
and ?GENFLOAT); And four different generators for ?GENSEED.

Below is the

rationale for which to choose.

TERMINOLOGY:

SEEDGEN= Random number generator used for ?GENSEED (i.e.,the

"seed generator™ used as the ?GENSEED ALGORITHM)

PASSGEN= Random number generator used for ?GENBITS, ?GENRNG,

LCG=
CLCG=
LFG—

ACIZTO

>
o
-

1
€
g

Il

?GENDEC, ?GENCHAR, AND ?GENFLODAT. (i.e.,the "pass
generator™)
Linear Congruent Generator
Combined Linear Congruent Generator
Lagged Fibonacci Generator
Forward multiplier for LCG's
Backward multiplier for LCG's
Additive constant for LCG'S
Present seed
}= Previous seed
Special "decomposition"™ variable for LCG's
Special "decomposition"™ variable for LCG's
Modulus

CLCG= Modulus for CLCG

Lag for LFG'S (the longer one)

Lag for LFG'S

Previous {I-J} seed from LFG seed array
}= Previous {I-K} seed from LFG seed arra

z4
OPERTR= The arithematic operator used for the LFG (+,0R)
PERIOD= How many numbers generated before sequence repeats

LINEAR

(i.e.,the cycle-length)

CONGRUENT GENERATORS (LCG)

EIEIEIEIEIHIENENKIIEIIEIEIIEIIEIIEIIEIIEIHIEIEIHINIHNE

COMBINE
FHAXXHHH

LCG's are designated as LCG(A,C,), and have é period
equal to M, M/2, M/4, or M/8. LCG's have the form:

X{I} (CCAYXX{I-13)>+C)//M FOR FORWARD STEPPING
X{I-11} (C(BYXX{I}) +C)//M FOR BACKWARD STEPPING

However, the intermediate products AXX{} and BXX{} must
be kept from creating 32-bit overflow (unless M=2X%32
where the //M can just be ignored). If overflow can't be
prevented, 646-bit simulated arithmetic must be used to
include the overflow. To prevent overflow, a "decomposed"
form of the above equation (if possible) must be used:

FORWARD :

Q=M/A

R=M//A
IF (AX(X{I-1}//Q) - AX(X{I-1}/
X{I}— AX(X{I-13}//Q) - A*(X{I-1}/R
Q) 1}/

R)) >0

ELSE

X{I}=CA%X(X{I-1}// - AX(X{I- R))+M
BACKWARD :

Q=M/B

R=M//B

IF (BX(X{I}//Q) - B*(X{I}/R)) > O

E{éé—l}= Bx(X{I}//Q)> - B*(X{I}/R)
X{I-1}=(BX(X{I}//Q) - BX(X{I}/R))+M

But this only works if Q@ > R which is rare (for example,
only 23,000 of the 4,000,000,000 32-bit LCG multipliers
satisfy this. And flndlng a LCG with both backward and
forward multipliers that satisfy this seems unlikely.

D LINEAR CONGRUENT GENERATORS (CLCG)
6N IENIIENNNHIEINHIINNHINHHINNIHIINNINN

CLCG'S are made from two LCG's and have a period
of (M1-1)%(M2-1)/2. They have the form:

X{I} = ((LCG(Al,Cl,M1)+
(LCG(A2,C2,M2))//M_CLCG FORWARD
X{I-1} = ((LCG(B1,Cl1,M1)+

(LCG(B2,C2,M2))//M_CLCG BACKWARD

PAGE 1

FILE: JTEXT J3 Al (WUN191) 06/10/98 17:28:59 PAGE 2

LAGGED FIBONACCI GENERATORS (LFG)

b3 3333 3ITITITIISIIIICSSLITIITILESS S
LFG'S are designated as LFG(J,K,M,0PERTR), and have a
period of:

((2%%J)-1)%(2%%(L0OG2(M)
and ((2%%J)-1)%(2%%x(L0G2(M)

LCG's have the form:
X{I} = (X{I-J} OPRERTR X{I-K})//M FORWARD ONLY
NO BACKWARDS YET

[}

gg for the + operator

1
3 for the ¥ operator

GOOD GENERATOR PROPERTIES ARE:

A) Has been used for at least several years in industry or
academia (i.e., well tested over time).

B) Produces a string of numbers which approximates an independent
and identically distributed source (I.I.D.). Independent means
the probability of a number being generated is independent of
when others generated (i.e., no conditional dependence).
Identically distributed means all numbers have an equal
probability of being generated (i.e.,a uniform distribution).
For independence, rely on documented testing in the published
literature.

For identically distributed, additional testing was done to
examine the bit uniformity of each generated 32-bit word for
each generator; only the "best" bits are used when using a
generator as a pass generator. The entire word is used when
using a generator as a seed generator.

C) Long periods (i.e.,want many numbers to be produced before
generator starts over). "Cycle"™ and "period" are synonymous.

D) Can generate non-overlapping segments. Each SAK program pass
causes a string (a segment) of numbers to be generated by the
pass generator (assuming the program contains some ?GEN¥'s).
Non-overlapping segments means no significant part of any
two segments will be identical. The generator's period can be
broken into non-overlapping segments.

This is only possible_using the "FIBP" generator. However,
any generator with a large enough period will most likely
produce mostly non-overlapping segments for a typical set of
SAK program passes. For example, a program with 100 ?GENX's
will use a segment of maybe 500 numbers; and if

you run the program 100,000 passes, you have a total of
50,000,000 numbers used. Even generators with relatively
small periods of 500,000,000 would use only 10% of their
period for this example. There would be some overlapping
segments -- but maybe not an undesirable amount. This example
assumes relatively small ?GEN* target lengths -- large
?GENBITS targets could lead to many over-lapping segments,
but this might be acceptable for some applications.

E) Execution speed (both to startup and to run). SAK programs with
many ?GEN¥'s or long ?GEN¥ targets are referred to as
"| ONG RUNS™ below. Some generators are not well suited for
"SHORT RUNS™ because of high initialization costs.

F) May want no repeats of a number within a seed generator's
cycle (i.e.,period) since a repeating base seed means
an identical pass is generated (however, since preceding
and following passes are most likely different, a different
machine state may be tested). Repeating numbers are ok
for pass generators -- only repeating sequences need to be
avoided.

G) Minimal seed memory requirements (i.e., more seeds means more
overhead and record keeping).

H) Minimal restrictions on initial seed.

I) Reversibility. The seed generator for SAK must go backwards;
and the pass generator used by the ?GENX%'S is sometimes
desired to go backwards. .

J) Repeatability. This is required for debugging. All of the
generators below provide repeatability (both individually
and when combined).

The following seed and pass generators can be specified when
ggénngggNSEED, ?GENBITS, ?GENRNG, ?GENCHAR, ?GENDEC, or

(#1)to(#4) can be used as either a seed or pass generator. 1A
(#5)to(#7) can only be used for a pass generator since they are AT
not yvet reversible. [:

FILE: JTEXT J3 Al (WUN191) 06/10/98 17:28:59

UMINSTD"(#4) is the default seed generator used by ?GENSEED.
"RANDUY (#2) is the default pass generator used by ?GENBITS,
?GENRNG, ?GENDEC, ?GENCHAR, and ?GENFLOAT (i.e., THE ?GEN%'S).

If (#1,#3,%#6,#5,#6,0or #7) is specified by ?GENSEED as the default
pass generator, that will be the default for all ?GENX*'S. A

?GEN* can however change the pass generator for one invocation.
Generator qualities have been subjectively graded below

from

1)

2)

A+ TO F:

"0GSD"™ (OLD GENSEED)

EHIEIIIEAHIEAIAAHKINAARRNRNK

FORWARD DESIGNATION: NONE, IT'S HOME-MADE
BACKWARD DESIGNATION: NONE, IT'S HOME MADE
INDEPENDENCE(OF 32-BIT WORDS).....?
UNIFORMITY(BITS USED FOR PASSGEN). 8 15(1 BYTE)D

PERIOD. . coewimossamuunmennanionssssime 2%%26

OVERLAPPING SEGMENTS.............. YES

STARTUP SPEED. .: .cscwessssuniasnas A

"SHORT™ RUN SPEED................. D

MLONG™ RUN SPEED. ..o :ooss00issens D

REPEATS NUMBER WITHIN PERIOD...... NO

NUMBER OF SEEDS.............ccu... 1

EE%EEICTIONS ON INITIAL SEED...... NOTC(O,EVEN,DIVISIBLE BY 5)

Derived in the 1970's by someone in SAK to be reversible
and not create overflow. It was the SAK seed generator for
25 vears. It has the following non-standard form:

FORWARD:

IF X{I-1}//2=0 THEN

X{I}=X{I-1}+'124C41"'X
IF XEI}I){/S g ;HEN
X{I}=C((X{I-1}//71000000000)%31627)//1000000000

BACKWARD:
IF X{I-1} IS EVEN THEN
X{I}=X{I-1}+"'124C41"'X
IF X{I-1}//5=0 THEN
X{I}=X{I-11+2
X{I}=C((X{I-1}//1000000000)%43222563)>//1000000000

"RANDU™
HHHINNN

FORWARD DESIGNATION: LCG(65539,0,2%%32)

- BACKWARD DESIGNATION: LCG(477211307 0,2%%%32)

3

4)

INDEPENDENCE(OF 32-BIT WORDS).....
UNIFORMITY(BITS USED FOR PASSGEN). lggl BYTE)D

PERIODG .o c puampiness vbhipugn i gmpsogs s 2X%%

OVERLAPPING SEGMENTS.............. YES

STARTUP SPEED. cwww c s ssimins e vnmsmons A+

MSHORTS™ RUN SPEED. :cucvvessmecmess A+ -
LONG™ RUN SPEED.........covuununn A+ '
REPEATS NUMBER WITHIN PERIOD...... NO

NUMBER OF SEEDS................... 1

ﬁg?EEICTIDNS ON INITIAL SEED...... NOT 0 OR EVEN

Derived from the power residue method in 1968. It was the
SAK pass generator for 25 vears, and is still the default
pass generator.

"IMPRV" (AN IMPROVED RANDU-TYPE GENERATOR)
ESIIIITTITITIILSSISS I I ITLIE LT LS

FORWARD DESIGNATION: LCG(71365,0,2%%32)
BACKWARD DESIGNATION: LCG(814217229 0,2%%x%32)

INDEPENBENCE(OF 32-BIT WORDS)..... B-
UNIFORMITY(BITS USED FOR PASSGEN).8:15(1 BYTE)
PERIOD. : : snvascsisonmwanss amnonisss 2X%%29
OVERLAPPING SEGMENTS.............. YES

STARTUP SPEED. ;s :uimwiiss noanionss A+

"SHORT™ RUN SPEED................. A+

MLONG™ RUN SPEED . ..vovussaamanisse A+

REPEATS NUMBER WITHIN PERIOD...... NO

NUMBER OF SEEDS.........cc0cuvun.e 1
RESTRICTIONS ON INITIAL SEED...... NOT 0 OR EVEN

"MINSTD"™ ("MINIMUM-STANDARD"™ VER. #2)
ESETTII ISR EIEIIT LTI T

FORWARD DESIGNATION: LCG(48271,0,(2%%31-1))

PAGE 3

FILE:

JTEXT J3 Al (WUN191) 06/10/98 17:28:59

5)

6)

7)

BACKWARD DESIGNATION: LCG(1899818559,(2%%%x31-1))

INDEPENDENCE(OF 32-BIT WORDS)..... B
UNIFORMITY(BITS USED FOR PASSGEN).8:31(3 BYTES)
PERTIOD cswwmn i3 spmmiss duniies sunngs 2%%31
OVERLAPPING SEGMENTS.............. YES
STARTUP SPEED....cc.sscosmsasnssnss A
"SHORT™ RUN SPEED..........coo.... B
"LONG"™ RUN SPEED.................. B
REPEATS NUMBER WITHIN PERIOD...... NO
NUMBER OF SEEDS................... 1
RESTRICTIONS ON INITIAL SEED...... NOT 0

OTES:

FORWARD:

Using decomposed form to prevent 32-bit overflow with:
Q=6464488 ,R=3399

BACKWARD :

Using simulated 64-bit arithmetic to handle 32-bit overflow
since Q->R for reverse multiplier.

This generator is the default SAK pass generator.

Minimum Standard versions #2 and #3 are more random than
version #l1. Version #l1 is the original Minimum Standard from
the 1960's. All three versions are in "“GENTAB COPY"™ (with
backwards multipliers).

"CLCG"™ (COMBINES TWO LCG'S)
FEIEIIHNHIENNHNHNHIHINHNIIIIIENIHNIEFIHIN

FORWARD DESIGNATION #l: LCG(40014,0,2147483563)
BACKWARD DESIGNATION #1: LCG(2082061899,21476483563)
FORWARD DESIGNATION #2: LCG(40692,0,21647483399)

BACKWARD DESIGNATION #2: LCG(1481316021 21647483399)

INDEPENDENCE(COF 32-BIT WORDS)..... B+
ggéFORMITY(BITS USED FOR PASSGEN). g 3%§3 BYTES)
OVERLAPPING SEGMENTS.............. YES
STARTUP SPEED.. s ¢ oo vomio s s vomamnssss A
"SHORT™ RUN SPEED................. B-
WIONG" RUN SPEED. .swwsiss somumnnsss B=
REPEATS NUMBER WITHIN PERIOD. ... YES
NUMBER OF SEEDS. ::cowiomscannmmnnins 2
RESTRICTIONS ON INITIAL SEED...... NOT 0
NOTES:

FORWARD :

Using decomposed form to prevent 32-bit overflow with:
Q1=53668,R1=12211 Q2=527744,R2=3791

BACKWARD :

Using simulated 64-bit arithmetic to handle 32-bit overflow

since Q->R for reverse multiplier.

During initialization, the base seed created by ?GENSEED

is used as the initial seed for both constituent generators.

"FIBM™ (LAGGED FIBONACCI USING MULTIPLICATION)
HEIEIENIEIINHIINNIHN NN KRR IR KNI RIIRRHIHNNNNK

FORWARD DESIGNATION: LFG(55,24,2%%32,+)
BACKWARD DESIGNATION: NOT YET DERIVED

INDEPENDENCE(OF 32-BIT WORDS)..... A+
UNIFORMITY(BITS USED FOR PASSGEN).7:30(3 BYTES)
PERIODL 5.5 5 505 5.0550.0.5 50 @ 6 1 1o 18 <6 5955 RS 2X%%83
OVERLAPPING SEGMENTS.............. YES

STARTUR SPEED v:usun s svwwimmm.a & o srwi o & cC+

"SHORT™ RUN SPEED..........ccvu. B-

"LONG™ RUN SPEED........c0civveunnn A-

REPEATS NUMBER WITHIN PERIOD...... YES

NUMBER OF SEEDS..........ciiveeunn 55
SE%EEICTIONS ON INITIAL SEEDS..... SEE NOTES

Two seeds must be updated in the seed table each ?GENX*
invocation,_and _the seed table must be initialized for
each pass. The initialization requires filling the seed
table with random values using another generator, then
make all entries odd.

"FIBP" (LAGGED FIBONACCI USING ADDITION)

363 IEIEIEIEIEIEKIEIE NI IAIIIHIEIIEIIENIEINIINIHIIININK
FORWARD DESIGNATION: LFG(521,168,2%%32,+)
BACKWARD DESIGNATION: NOT YET DERIVED
INDEPENDENCE(OF 32-BIT WORDS)..... A
UNIFORMITY(BITS USED FOR PASSGEN).7:30(3 BYTES)

PAGE 4

FILE: JTEXT J3 Al (WUN191) 06/10/98 17:28:59

PERLOD . min s »nmmmis o s ommemic s o s e 2%%531
OVERLAPPING SEGMENTS.............. NO
STARTUP SPEED: i : ics nasewn s vamummns D

"SHORT™ RUN SPEED................. C+

YL ONG®™ RUN SPEED. .::auwec s onnnie A-
REPEATS NUMBER WITHIN PERIOD...... YES
NUMBER OF SEEDS...::.5000co0moiwss 521
EE%EEICTIUNS ON INITIAL SEEDS..... SEE NOTES

Two seeds must be updated in the seed table each ?GENx*
invocation,_and the seed table must be initialized for
each pass. The initialization requires filling the seed
table with random values using another generator, then
to get a un1que non-overlapping segment of the
generator's cycle (i.e., to get the most uncorrelated
program passes), the initial array must also be put into

a "CANONICAL FORM". This is only possible for certain J,K

pairs and is made by shifting left (zero into the LSB),

clear the sign bit, then zero the entire last entry, then

the LSB for one or two special entries is set on:

3,2 1
5,3 2,3
10,7 8
17,5 11
35,2 1
55,24 12
71,65 2
93,91 2,3
127,97 22
158,128 64
521,168 88 (THIS IS THE J,K PAIR CHOSEN FOR SAK)

SUMMARY OF GENERATORS:
EINNIIEIIIIINNNHIINNHIK

0GSD RANDU IMPRV MINSTD CLCG FIBM FIBP

WORD INDEPENDENCE ? D B- B B+ A+ A

BITS USED (?GENx*) 8:15 8:15 8:15 8:31 8:31 7:30 7:30
PERIOD 2%x%26 2$*29 23*29 2%%X31 2%%63 2$*83 2*?531

OVERLAPPING Y Y Y
STARTUP SPEED A A+ A+ A A C+: D
"SHORT™ RUN SPEED D A+ A+ B B- B- C+
"LONG™ RUN SPEED D A+ A+ B B- A- A-
REPEATS IN PERIOD N N N N Y Y. Y
NUMBER OF SEEDS 1 1 1 1 2 55 521
SEED RESTRICTIONS MANY >0,0DD >0,0DD >0 >0 MANY MANY

"CONTROLLED RANDOMNESS™
FEAHNIIEIINNNNNHHHIENNKHIIIEN

The overall "RANDOM BACKBONE™ of a succession of passes can be
controlled through the selection of seed and pass generators.
For example,

For filling large data area's or
for programs with few ?GENX*'S,
Choose: SEEDGEN="MINSTD™
PASSGEN="IMPRV"
for very fast, reversible passes, a single seed, and
ok randomness; but small period and overlapping segments.

For programs with many ?GENX%'S (some reversible),
Choose: SEEDGEN="MINSTD"™
PASSGEN="CLCG"
for very random, reversible ?GENX'S, and big period; but
overlapping segments and two seeds to handle.

For programs with many ?GEN¥'S (none reversible),
Choose: SEEDGEN="MINSTD"
PASSGEN="FIBP"
for the ultimate in non-correlated passes (i.e.,very good
word independence and non-overlapping segments); but not
reversible ?GEN¥'S and 521 seeds.

For any program where intentional lack of randomness and high

PAGE 5

)

FILE: JTEXT J3 Al (WUN191) 06/10/98 17:28:59

correlation between passes is desired,
Choose: SEEDGEN="0GSD"
- PASSGEN="0GSD"

Choose: SEEDGEN="RANDU"

PASSGEN="RANDU"™
This may closely simulate actual code execution (i.e.,lack
of randomness and interdependence between passes may
sometimes be a good thing!).

PAGE 6

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

