CS/EGR 230 Semester Projects

CONCEPTUAL DESIGN OF A SPACE-EXPLORATION RELATED ROBOT, SPACE CRAFT, OR AI-CONTAINING COMPUTER SYSTEM

by Kevin Christie

Exploring Space with AI

by Christine Miller

Mining Space

by Todd Lewellen and Kamron Malik

A Moon Station

by Michael Fleming

A Communications Probe

(Selected Talk for Today)

by Craig Rixham and David Tileson

Architecture of a Communications Probe in a Space Network

Craig Rixham

David Tileston

Overview of Current Space Networking

- Most missions use unique protocols.
- Probes communicate with limited numbers of receivers
- Limited timeframe to communicate with probes
- High development costs

Proposed Space Network

- Space Internet would link NASA infrastructure into one large, widely distributed network.
- Communication times greatly reduced.
- Cost and development time reduced
- Higher transfer speeds could be achieved for near Earth orbits (ISS).

Proposed Network Protocols

- TCP/IP Ground based network packetized protocol used in the Internet and Earth-based networks.
 - Some issues with use in space

 Delay-Tolerant Network (DTN) designed for disrupted or intermittent networks.

Proposed Network Protocols Comparison

TCP/IP		DTN	
Advantages	Disadvantages	Advantages	Disadvantages
Decreased cost	Not compatible	Transfer large	More expensive
• "Off the shelf"	with disrupted	chunks of data	Time inefficient
products	networks	• Less time spent	Requires large
• Faster	Requires fast	transmitting	memory
development	communication	Very reliable	No existing model
Contracted help	Limited use in		
	space		

Example of Space Network

- High altitude, networked satellites above Mars
- Constant link between landers/humans on surface
- Satellites serve as comm relays

Possible Probe Locations

- Earth-Sun libration points
- Orbiting important bodies (Mars, moons of Jupiter)

Communication Probe Specifications

- Probe Subsystems and Hardware
 - Power Supply
 - Propulsion
 - Attitude Control
 - Temperature Control
 - Antenna Control

Power Supply

Solar Power - uses solar panels of varying sizes to provide power for rechargeable batteries

Advantages	Disadvantages	
Potentially unlimited supply	Essentially useless beyond Mars' orbit	
• Larger panels = more energy	 As distance increases, so does weight 	
Allow for more demanding systems		

Power Supply

Radioisotope Thermoelectric Generator - uses heat from the decay of radioactive fuel to generate electricity

Advantages	Disadvantages	
Does not depend on an external power	Power supply is completely internal,	
source	therefore limited	
• Can operate at great distances from the	Produces less energy than solar panels	
sun	near the Sun	
Decreased weight		

Propulsion

Solid Chemical Propellant	Liquid Chemical Propellant	Electrical Propellant
Powerful thrust	Greater amount of thrust	• Uses electricity to propel
More fuel efficient	control	the probe
Lacks thrust control	 Lower thrust than solid 	• 10x efficiency
	 Less efficient than solid 	 High electrical
		consumption

Attitude Control

- Star Tracking sensors detect patterns in stars
 - Star tracking provides location and orientation
 - Multiple sensors installed provide three dimensional data
- Gyroscopes detect inertial movement
 - Is not dependent on observation
- Used together for greater accuracy

Temperature Control

- Solar energy heats one surface while leaving others cold
- Active Methods
 - Require power from the probe
 - Spin probe to equalize exposure
- Passive Methods
 - Do not require power
 - Heat shield
 - Reflective surfaces
 - Black or white paint
 - Make crucial components central

Antenna Control

- Two types of signals
 - Radio Frequency & Lasers

- Multiple antennas on probe
 - Reduces amount of rotation needed
- Very precise aim for long distances
 - Linked to orientation system

Probe Microcontrollers

- Use variety of microcontrollers
- Systems linked together
- Possible use of lightweight, single die in future

Picture Citations

- http://www.cisco.com/en/US/i/Other/Cisco Press/ITG/10-19-01/TR890702.jpg
- Bhasin, Kul & Hayden, Jeffry. "Space Internet Architectures and Technologies for NASA Enterprises." IEEE Aerospace Conference, 2001.
- Eddy, Wesley, et. al. "A Bundle of Problems." IEEE Aerospace Conference, 2009