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ABSTRACT: Robot autonomy needs to be carefully designed to protect life and 
property; however excessive constraints can prevent discovery or even halt all progress. 
Applications like assisting the disabled need stringent safety constraints placed on 
robot autonomy; however mobile robots maneuvering on distant planets need 
maximum autonomy to compensate for the time required for an earth-based command 
to reach them; Tele-operated robots don‟t function well at great distances, so the 
robot must be able to learn and adapt in order to explore intelligently while protecting 
itself from damage. The design of this type of advanced autonomy can be enhanced by 
exploring forms of machine intelligence including various computer hardware and 
software implementations. An exploration of machine intelligence concepts can also be 
complimented by an understanding of biological brain function and human psychology. 
A study of past, present, and future NASA and ESA robotic space missions yields much 
insight into the autonomy and machine intelligence likely to be needed for future space 
missions. This paper also presents several Ph.D. and advanced undergraduate 
autonomous robot projects taught in the U.S. and Europe by the author. 
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Introduction 
Designing robot autonomy involves complex decision 

making including minimizing the risks to life, property, 

and robots. However excessive constraints can prevent 

discovery or even halt all progress in complex 

environments. This paper discusses designing robot 

autonomy for many types of robotic applications including 

tedious or high-precision tasks such as industrial assembly 

or medical operations; clean-up of common and hazardous 

waste; search and rescue operations; super-human 

responses such as those needed for police operations; 

assisting the disabled; acting as assistants or companions 

to humans; and for exploration of the oceans and space. An 

expanded discussion is included on past, present, and 

future space missions where robots are operating at such 

great distances from earth that autonomy must be 

maximized [1 to 13]. Additionally, a discussion of how 

advances in machine intelligence relates to robot autonomy 

is included [14,15].  

 

Industrial Assembly 
Industrial robots provide precision, repeatability, and 

strength. However excessive autonomy can jeopardize 

worker safety and damage materials. To mitigate these 

risks, robot designers should limit the maximum velocities, 

torques, and motion-ranges of any industrial robotic arm; 

and the work-space of the robot should be caged and have 

restricted access to the work-cell; this is a law in the 

United States per the Occupational Safety and Health Act 

(OSHA). Figure 1 is an example robotic arm design 

yielded by the research in [16] where the arm design has 

been optimized for many parameters including limiting 

maximum velocities while performing a very difficult task 

inside an enclosure. This research was extended to the 

design of industrial robotic arms for welding tasks in [17]. 
 

 
Figure 1 . Robotic arm design optimized for many parameters including 

limiting maximum velocities while performing a difficult task [16].  

 

Robotic Surgery 
Tele-robotic surgical robots provide improved precision 

and allow surgeons to perform long operations without 

becoming fatigued. Excessive robot autonomy could 

jeopardize the safety of the patient. To mitigate this, robot 

designers limit maximum robot velocities, torques, and 

motion-range. Automated surgical procedures should also 

be kept to a minimum. A nurse or other surgical assistant 

should always monitor the robot and patient at the incision 

point. The Da Vinci tele-robotic surgery arm has been in 

use for many years. In [18], a recent study of its error and 

failure rates shows that for 807 laparoscopic surgeries, 

technical errors resulting in “surgeon handicap” occurred 

in three cases; Four patients had their procedures aborted 

due to system failure at initial set-up; and four cases were 

either aborted or converted to a non-robotic procedure. 

Even though only 11 of 807 surgical procedures had 

robotic complications, the need for human control of the 

robot is still required.  
 

Clean-Up 
Robots performing general and hazardous clean-up free 

workers from contamination and fatigue; and robots can 

very efficiently pick-up and contain waste. However 

excessive autonomy can jeopardize the safety of people 

and property in close proximity to the robots. To mitigate 

these risks, robot designers should limit maximum robot 

velocity and drive-power; designers should also include 

both obstacle avoidance hardware & software in the 

robots. These robots typically have only random search 

strategies for finding waste and navigating around 

obstacles; future cleaning robots could be designed to 

create environmental maps of their environment to aid in 

optimal cleanup and therefore minimize interaction risks 

with humans. This involves designing not only “local” 

path-planners, but also “global” path-planners that 

understand and incrementally build maps of a robot’s work 

environment [1,11,19,20].   

 

Search and Rescue 
Search and rescue robots are typically tele-operated and 

assist first-responders to save human lives during man-

made and natural disasters. These robots prevent 

responders from injury and can endure extremes in 

temperature, pressure, oxygen-levels, and radiation. 

Excessive robot autonomy could however jeopardize the 

safety of people being rescued and could result in the robot 

getting damaged or lost. To mitigate these risks robot 

designers should minimize robot manipulation of those 

being rescued and always have a human in control and 

fully aware of a robot’s actions via tele-robotic control. 

The robot’s velocity and manipulability-power should be 

limited when interacting with humans. Additionally, as 

shown in [21], search and rescue robots can be networked 

to help each other in searches, and can relay information 

back to a central station where a large comprehensive 

environmental map can be incrementally built for the 

disaster area. Search information can then be sent back to 

the robots to improve their search and to send specialized 

robots to specific areas of need for digging; fire-

suppression; delivery of first-aid, food, water, and oxygen; 



to aid in removal of people from hazardous environment; 

and to contain chemical or radioactive materials. 

Military and Police 
Both robotic arms and mobile robots can protect soldiers 

and police in hostile environments. However excessive 

robot autonomy can result in brutality, death, and even 

Geneva Convention violations. To mitigate this, robot 

designers must minimize weaponization on autonomous 

robots, and always ensure that a human is: 

 In control of the robot 

 Is fully aware of the context of the situation 

 Has been screened to be highly ethical and have 

an understanding of “rules of engagement.” 

 A detailed discussion of these issues can be found in [22]. 

  

Assisting the Disabled 
Robots to assist the disabled can greatly improve the lives 

of those disabled by injury, birth, or old-age. Excessive 

robot autonomy could easily jeopardize the safety of the 

these people and therefore extreme caution must be taken 

to ensure safety. This can include limiting maximum robot 

velocities, torques, and motion-range,  plus adding 

obstacle avoidance hardware and software on robotic arms 

and mobile robots. These robots can be as simple as an 

intelligent wheel chair, or as complex as a tele-operated 

system to map the reduced dexterity of a quadriplegic 

person  to  useful movements of a robotic arm [23].  
 
Assistants/Companions  
Some robots that are almost fully autonomous can assist 

and provide companionship to humans. They need to have 

enough autonomy to function almost completely on their 

own and are often given humanoid form to better interact 

with humans and to more easily operate equipment 

designed for humans. For safety, these robots are often 

designed with very limited velocities and power. They are 

even sometimes designed to have non-threatening 

appearance and actions, and to invoke a feeling of 

servitude companionship. Treating them as sentient could 

become problematic. A good review of many Japanese 

robots designed for such tasks can be found in [24].   

Exploration 
Robots allow exploration of dangerous or distant places 

and allow humans to safely observe collected data from a 

safe distance. Long distances between planets also 

mandates the need for maximizing robot autonomy since 

the time needed for commands to be received from a 

distant human operator can be so large that the robot 

cannot be productive. For example, it can take over 20 

minutes for a signal to reach Mars from Earth, and the 

distances to new exploration sites (like the moons of 

Jupiter) are much further. Space exploration robots are 

always hardened for extreme temperatures, pressures, and 

radiation [3,4,7,9,10]. This could be considered a type of 

autonomy since it would be very difficult (and expensive) 

for a human to be equipped to survive these conditions. 

Robots can also be left in space which eliminates the 

considerable risk an financial costs of retuning an 

astronaut to Earth. The robotic autonomy needed for 

exploration can be related historically to the simplest 

navigation techniques of early explorers. When 

Christopher Columbus discovered America in the 1492 he 

used only the crudest navigation techniques to estimate his 

position and orientation in space (i.e., his “Pose”). Simple 

celestial navigation tools, a compass, a crude clock, and 

the crude map shown in Figure 1 where all he needed to 

navigate . The speed of the ship was calculated by 

measuring the time it took for debris in the water to float 

between two fixed points on the side of the ship. In Figure 

2 Europe and Africa are shown on the right, the Atlantic 

and Pacific oceans combined as one ocean in the middle, 

and an earth-centric depiction of our solar system on the 

left (with all planets orbiting the earth). 
 

 
Figure 2. Christopher Columbus map of the world. 

 

Pose estimation later became an extremely important part 

of robot autonomy and has been incorporated into NASA 

space exploration missions since the first Lunar rovers in 

the 1970’s [3,4,9,10]. Although these rovers were manned, 

they had the ability to measure their location, orientation, 

and tilt – plus they could calculate a shortest path back to 

the lander. Recent NASA Mar’s rovers have increasingly 

more sophisticated autonomy in addition to pose 

estimation [11,12,13]. In 1996, Mars Pathfinder 

“Sojourner,” a semi-autonomous tele-operated mobile 

robot had stereo cameras and five infrared laser-stripes to 

detect hazards; it could sense 20 3D-points per navigation 

step and its autonomy consisted of: 
 

 Pose estimation  

 Terrain Navigation 

 Contingency Response 

 Resource Management 

 A “Find Rock” COMMAND  

 A “Thread Needle” COMMAND to navigate 

between obstacles 



 In 2004 NASA Mars Explorer Rovers “Spirit” and 

“Opportunity,” also semi-autonomous tele-operated 

mobile robots, were capable of sensing 15,000 to 40,000 

3D points per image and possessed the following 

autonomy: 

 

 Pose estimation as a function of wheel rotation, 

accelerometer, and angular velocity 

 Orientation sensing as a function of sun angle and 

gravity 

 Terrain Navigation  

 Obstacle avoidance 

 

and in 2006 the following autonomy software upgrades 

were uploaded to these robots: 

 

 A global path planner 

 Visual target tracking 

 On-board dust devil and cloud detection 

 Auto approach & place instrument 

 

And in 2010 an additional autonomy software upgrade was 

uploaded: 

 

 AEGIS (Opportunistic Autonomous Exploration 

for Gathering Increased Science) system 

 

In 2011, NASA will launch another Mar’s mobile robot:  

the Mars Science Lab “Curiosity” which will navigate up 

to 5km from the landing site and find & sample scientific 

events[12]; and although it will still periodically receive 

commands from earth it will have the following autonomy: 

  

 Global path planner  

 Terrain prediction (for slip compensation) 

 Autonomous Science to predict & detect novel 

science events 

 Motion compensation while excavating/drilling 

with its robotic arm 

 

In 2020, NASA and the European Space Agency (ESA) 

will launch a joint mission to explore Jupiter and its 

moons. The goal of this joint mission is to explore the 

Jupiter System then orbit Europa and Ganymede to 

characterize water oceans beneath their ice [2]. Figure 3 

and 4 show these moons and Figure 5 shows cracks and 

holes in the surfaces where the relatively warm sub-surface 

oceans (warmed by the huge tidal forces caused by the 

extremely large mass of Jupiter) have reached the surface 

then froze. And as discussed in [6 and 28], many scientists 

now believe there is a possibility of life in these oceans.  

 

 
Figure 3. Jupiter’s moon Europa [26]. 

 

 
   Figure 4. Jupiter’s moon Ganymede [26]. 

 

 

 
Figure 5. Surfaces of Jupiter’s moons Ganymede and Europa 

 showing cracks where relatively warm sub-surface oceans reach 

 the surfaces then freeze [27]. 

 



In 2009 the author taught a Ph.D. course in “Advanced 

Robotics with Applications to Space Exploration” 

at the University of Trento in Italy with an optional course 

project to design a fully autonomous rover for Jupiter’s 

moon Europa. This assignment was defined as follows: 
  
 

The mission objective is to explore an ocean confirmed in 2025 to 
be under the ice of Europa. Assume your launch is scheduled for 
2040. 
 

Also assume one of the following: 
1. The Europa Jupiter System Mission scheduled for launch in 

2020 discovers some very thin patches of ice (less than 200 
meters thick) created by localized sub-surface thermal anomalies. 

2. A mission concurrent to yours (but designed by others) has created 
craters on Europa’s surface that have frozen over with 
approximately 200 meters of ice; but assume the ice will quickly 
freeze much thicker – and therefore a rapid execution of all mission 
operations is critical. 

 

Your rover must be able to: 

 Maneuver on the flat icy surface of Europa (Assume some mobility 
is required even though main objective is getting below surface) 

 Drill through at least 200 meters of ice 

 When liquid water is reached, either: 
o Act as an Unmanned Underwater Vehicle’s (UUV), or 
o Deploy 100 very small networked UUV’s (i.e., a 

“Swarm”). Assume they are only 10 centimeters long. 

 Communicate with the UUV’s if option (2) above is chosen 

 Communicate with a base station that is also communicating with 
several orbiters, and earth. The base station is also assumed to be 
running a concurrent simulation to the rover’s real-time code and 
will be building an environmental map simulation of the region of 
Europa being explored. This simulation information should also be 
communicated back to the rover, and then to UUV’s if option (2) 
above is chosen; this is to help with exploration and preservation of 
the rover. Optionally, control a hyper-redundant manipulator 
attached to the rover to aid with exploration, digging, and/or 
deployment of small UUV’s 

 Withstand the extremely cold temperatures (-143C, -225F max) 

 Power itself by some energy source other than the sun since 
incident solar radiation reaching Europa is minimal; propose a 
means of powering the rover. 
 

Assume the launch vehicle and delivery system are designed by others. 
Begin your rover’s trek on the surface by assuming that a successful 
orbiter and base station have been deployed; you may assume your 
rover is delivered to the surface by a different method (and location) than 
the base station. When estimating vehicle weight and maximum 
payload, consider that Europa’s gravity is only 13.5% of Earth’s. 
 

Between 2000 and 2011, at Elizabethtown College in 

Pennsylvania, the author’s students have created a line of 

fully autonomous mobile robots which have included 

sophisticated path-planning and obstacle avoidance using 

vision, GPS, Laser Range Finding (LADAR), ultrasonic 

sensors, and a digital compass; And various computing 

hardware and software have been experimented with 

including programming in C, Visual-Basic, Assembly 

language, and Labview. Algorithms have been developed 

for neural network detection of handwritten characters (for 

the robot to follow), and for exploration using local and 

global path-planning methods. A specialized wireless 

communication protocol was also developed for the IGVC 

(Intelligent Ground Vehicle Competition) shown in Figure 

6 so that the robot can respond to a remote command 

center when not running in the fully autonomous mode.  

 

 
Figure 6. Intelligent Ground Vehicle Competition (IGVC); an 

international competition held in the U.S. where Elizabethtown College 
has competed several times. All events require robots to be fully 

autonomous. 

 

 

Figure 7. shows our fifth generation of fully-autonomous 

robots. Presently, the robot is being re-tooled for 

environmental sampling and integration with other 

environmental initiatives on campus. This includes adding 

a robotic arm for collecting environmental samples. 

 

 
Figure 7. Fifth generation of Elizabethton College 

 fully-autonomous mobile robots. 
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But What Is Intelligence ? 

The concept of autonomy as it relates to machine 

intelligence can best be discussed in the context of 

understanding all mental abilities. Over the past fourteen  

years the author and his students at Purdue University, 

Elizabethtown College, and the University of Trento have 

developed a list of 42 mental abilities that can be consider 

when attempting to define what makes a machine 

intelligent or fully autonomous. Machine intelligence is 

typically broken into two main research fields: Symbolic 

Artificial Intelligence (AI) and artificial neural networks. 

Symbolic AI involves developing computer programs 

which use heuristics, inference, hypothesis testing, and 

forms of knowledge representation to solve problems. This 

includes “Expert Systems” and programming languages 

such as PROLOG and LISP, with the knowledge contained 

in the logic, algorithms, predicate calculus, and data 

structures [29]. An artificial neural network is a form of 

connectionist computer architecture (hardware or software) 

where many simple computational nodes are connected in 

an architecture similar to that of a biological brain. The 

typical network is trained (i.e., learns) by changing the 

strength (weight) of inter-neuron connections such that 

multiple input/desired-output pairs are satisfied 

simultaneously; the final set of network weights represents 

the compromises made to satisfy multiple constraints 

simultaneously [29-33]. In an attempt to simplify the 

discussion each of the 42 mental abilities in Table 1 have 

been grouped by abilities which are often related. 

 

(1) Acquire and retain knowledge, (2) Solve problems are 

often assessed for humans by standardized tests such as the 

SAT exam for U.S. college entrance. Most any computer 

can solve problems and retain knowledge; they only differ 

in memory capacity, method of storage, method of solving, 

and class of solvable problems.  

(3) Learn and adapt: Humans easily learn and adapt to 

new environments and stimuli, and do so in both real-time 

and evolutionary time. Conventional computers have great 

difficulty with this. A human programmer is almost always 

needed to modify the programs. Traditional symbolic AI is 

somewhat adaptable to new input, however artificial neural 

networks are much better at this -- with an ability to 

generalize when presented new inputs. They can also learn 

very quickly when embedded in hardware [14, 19, 34]. 

(4) Motor coordination, (5) Acquire energy, (6) Protect 

self: These have been referred to as “Mobility”, 

“Acquisition”, and “Protection” [35] and are essential for 

the survival of most animals. These have been somewhat 

implemented by conventional and intelligent machines 

(e.g., robotic motor control, power supplies, firewalls).   

(7) Sensory processing, (8) Real-time thought, (9) React 

instinctively, (10) Anticipate, (11) Predict: Most animals 

sense their surroundings and think quickly and often 

instinctually what to do. They therefore can anticipate and 

predict. With the exception of instinct, conventional 

and Intelligent machines can also do these things; however 

neural networks outperform symbolic AI when dealing 

with new stimuli and can be much faster (especially if 

embedded in hardware [14] ). They can also predict by 

extrapolating known information.  

 
 

 
 

MENTAL 
ABILITY 

MACHINE 
INTELLIGENCE 

 
 
  
 
 
 
 Comments 

Can 
 Symbolic 

 AI 
Program 

 do? 

Can 
 Artificial 
 Neural 
Network 

 do? 
1 Acquire & retain knowledge yes yes  
2 Solve problems yes yes  
3 Learn and adapt somewhat yes Evolution 
4 Motor coordination  somewhat somewhat Survival 
5 Acquire energy somewhat somewhat Survival 
6 Protect self somewhat somewhat Survival 
7 Sensory processing  yes yes  
8 Real-time thought yes yes  
9 React instinctively not yet not yet  
10 Anticipate yes yes  
11 Predict yes yes  
12 Communicate yes yes  
13 Generalize  somewhat yes  
14 Associate somewhat yes  
15 Recognition patterns somewhat yes  
16 Robust under partial failure no yes  
17 Autonomous thought  somewhat somewhat  
18 Drive to reproduce not yet not yet  
19 Stability, predictability yes somewhat Uncertainty 
20 Multitask somewhat yes  
21 Abstraction no somewhat  
22 Intuition  not yet not yet  
23 Common sense not yet not yet  
24 Manipulate tools yes yes Evolution 
25 Heuristics yes no  
26 Inference yes somewhat  
27 Hypothesis testing yes no  
28 Self-discipline & control somewhat somewhat  
29 Ethical behavior somewhat somewhat Trained 
30 Selective awareness yes yes Filtering 
31 Open to inspection yes somewhat  
32 Emotions not yet not yet  
33 Imagination not yet not yet  
34 Creativity  not yet not yet  
35 Passion not yet not yet  
36 Playfulness not yet not yet Evolution 
37 Empathy  not yet not yet  
38 Courage  not yet not yet  
39 Leadership not yet not yet  
40 Self awareness not yet not yet  
41 Awareness of mortality immortal? immortal?  
42 Group psychology somewhat somewhat Network 

 

Table 1. Subjective assessment of the ability of two kinds of 
machine intelligence to reproduce human mental abilities. 



  (12) Communication: Animals, conventional computers, 

and intelligent machines all communicate. However 

nothing comes close to what humans can do with natural 

language processing. Traditional symbolic AI has been 

attempting this for decades, however neural networks have 

had more recent success in speech recognition including 

the difficult understanding of “context”[29-33]. The most 

recent success in this field is the IBM supercomputer 

“Watson” which in 2011 dominated the TV show 

jeopardy against two all-time human champions. This was 

done by combining the rule-based methodology of 

traditional Symbolic AI with a statistical, distributed 

narrowing of possible target-answers by using methods 

similar to the underlying learning principles of artificial 

neural networks [36]. 

(13) Generalize: Generalize is “to derive or induce a 

general principle or concept from particulars”[37].  

Animals do this well. Conventional computers don’t; they 

give very specific responses to very specific inputs. 

Symbolic AI can only do this to the extent the program has 

been built with variations to consider. Neural networks are 

very good at this; with the ability to generalize such that 

outputs are produced which “best fit” (i.e., classify) a set 

of inputs (even when they differ from what the network 

was trained with).  

(14) Associate, (15) Recognize patterns: All animals do 

this well; however no animal surpasses the human’s ability 

to associate concepts and memories. Conventional 

computers do this in a very limited way; they can associate 

by correlating data and can recognize the simple encoded 

patterns of bit-streams input by humans and other 

machines. Symbolic AI programs do this better, but are 

still limited by the fixed structure (i.e., the “state-space” is 

fixed regardless of how efficiently it is searched). Neural 

networks are very good at association – with an ability 

through generalization to associate patterns such as never-

seen hand-written characters to recorded ASCII 

representations. Neural networks are widely used for 

recognizing image and speech patterns [30-33].  

(16) Robust under partial failure: Evolution has insured 

that animals can often continue to function when one or 

more subsystems fail (including parts of the brain). 

Conventional computers can’t do this to any significant 

degree; even a simple one-bit error in program execution 

can sometimes cause a system to “lock-up.” Symbolic AI 

programs running on conventional computers are also 

likely to not function when the underlying computer 

system fails. Neural networks are very robust under partial 

failure and have the ability to partially function when some 

neurons or inter-neuron connections fail [30-33]. 

(17) Autonomous thought: With the exception of 

programming dictated by genes, most animals are free to 

make their own decisions. Conventional computers and 

symbolic AI programs can be considered to somewhat help 

facilitate autonomy in machines; however, since they 

typically respond in a pre-programmed way without 

significant learning, their contribution is limited. A neural 

network’s ability to learn, generalize, and deal with never-

seen input is a very important part autonomous thought.  

(18) Drive to reproduce: Humans are free to make their 

own decisions (including suppressing the urge to 

reproduce). Intelligent machines do not yet reproduce on 

their own. But it’s not beyond the realm of possibility that 

someday far in the future fully-autonomous intelligent 

machines could decide to reproduce.  

(19) Stability and Predictability: There is a definite degree 

of uncertainty associated with human behavior. “physics 

has managed to incorporate uncertainty into its 

prospectuses, and there is no reason to believe that the 

scientific study of behavior cannot successfully 

incorporate a "biobehavioral uncertainty principle" as 

well…..Intrinsic variability not only removes the spectra of 

absolute predictability, but may provide a basis for 

admitting more fully into scientific discourse the concept 

of free will…. behavior is fundamentally exploratory” 

[38]. Conventional computers and symbolic AI don’t have 

this problem (or virtue). They simply respond in a pre-

programmed way. Neural networks however can produce 

unexpected results; especially when dealing with never-

seen input. 

(20) Multitask: The evolution of most biological life has 

led to brains with multiple subsystems working in a 

coordinated fashion; some performing basic system 

regulation (e.g.,  pulmonary, respiratory, temperature, and 

motor control), some pre-processing information before 

relaying it to higher reasoning centers (e.g., visual cortex), 

and some performing higher reasoning.  Conventional 

computers are becoming better at multitasking, with 

multiple CPU’s (Central Processing Units) and subsystems 

performing tasks simultaneous to the functioning of the 

CPU’s. Examples are DMA (Direct Memory Access), and 

graphics-board processors [39-42]. Also many computing 

systems are becoming distributed with relatively simple 

computing being embedded (FPGA’s ASIC’s, and 

microcontrollers) and the more complex computing being 

done by separate more-powerful parts (microprocessors, 

array-processors, physics-engines, vector-register units, 

etc.) [39-44]. It’s important to note that “multitasking” in 

computer industry nomenclature can sometimes imply a 

time-sliced use of a CPU and not true simultaneous, 

parallel functionality. This is one reason to be careful 

when comparing human performance with typical uni-

processor computer performance. When discussing brain 

performance, one must consider the brain’s high degree of 

parallelism and pre-processing, and its ability to combine 

highly-focused parts into an inter-woven collective. For 

example, in [45] “Concept Neurons” are show to be so 

specific that one single neuron was identified in a test-

subject to be specifically created to recognize the actress 

Jennifer Anniston; however the typical human brain can 

coordinate billions of neurons. This is accomplished by 

creating specialized clusters of neurons for the various 



mental abilities listed in Table 1, and this distributed 

thought is needed for self awareness [43]; but in some 

humans the degree of localization and distributed 

communication is different. For example Autism is 

believed to be related to a lack of communication between 

the brain’s hemispheres. A study of one Autistic Savant in 

[45] showed that the lack of communication between the 

hemispheres meant no preprocessing of information and 

therefore an inability to understand  metaphors; however 

this also allowed the test-subject to be extremely focused 

on individual tasks such that they could, for example, 

photographically memorize two pages at once while 

reading, and they could memorize 50000 zip codes. Also 

in [45] it was shown that many scientists have highly 

developed localized (but somewhat isolated) regions of the 

brain, with shorter connection lengths between neurons 

allowing localized intense processing. There cerebral 

cortex was also shown to have a typically higher density of 

neuron connections; however most scientists (the author 

included) would probably object to being compared to a 

type of Savant. Man-made multitasking is typically only 

found in symbolic AI programs when written for multi-

processor machines, but multitasking is a significant part 

of artificial neural network learning. IBM “Watson”[36] is 

a new step in multitasking both hardware and software. 

(21) Abstraction, (22) Intuition, (23) Common sense: 

Abstract is: “having only intrinsic form with little or no 

attempt at pictorial representation or narrative content” 

[37].  Intuition is: “Knowing without conscious 

reasoning” [37].  Combining these definitions can yield 

insight into the more complex workings of the human 

brain (i.e., partially defined or disconnected thoughts could 

lead to higher reasoning). Conventional computers and 

symbolic AI programs simply respond in a pre-

programmed way. The ability of neural networks to learn 

by repeatedly modifying inter-neuron connection weights 

until a compromise is reached could be thought of as a 

form of abstraction. Common sense is: “Sound and 

prudent but often unsophisticated judgment” [37].  Some 

very analytical people are sometimes said to not have 

common sense; perhaps the need for highly focused logic 

and “sophisticated judgment” to prove a hypotheses could 

hinder the ability think in a whole-brain fashion – even if 

an abstract, intuitive, and somewhat unsophisticated 

thought could lead to a better common-sense answer. 

(24) Manipulate tools: Although a spider can design and 

construct elaborate webs, it is not likely to envision 

extensions of its appendages (i.e., tools) to do so. 

Manipulating tools is exclusive to more evolved animals 

and is attributed to humans becoming bipedal; allowing 

our front “feet” to become hands for manipulating tools. 

Conventional and intelligent computational systems can 

also manipulate tools by creating signals to send to 

actuators (e.g., motors, etc.), which in turn position and 

orient tools. This is a definition of robotic-arm control. Not 

only what a robotic arm holds, but the arm itself can be 

considered a tool for the computer to realize manipulation 

of the physical world around it. 

(25) Heuristics, (26) Inference, (27) Hypotheses testing: 

Most animals don’t consider every possible way to react to 

a situation before acting (i.e., an exhaustive search); they 

instead apply heuristics to more efficiently select an action. 

They also recognize when one scenario infers another, and 

can solve problems by testing multiple hypotheses to result 

in one solution. Conventional computer programs only 

somewhat do this. Symbolic AI programs (especially 

“Expert Systems”) can do all of these things [29]. Most 

neural networks however are not well suited for the step by 

step process needed to apply heuristics or hypothesis test, 

but can somewhat infer results for given input data 

(including never-seen input).  

(28) Self-discipline & Impulse control, (29) Ethical 

behavior: Despite genetic, instinctual, programmed animal 

“drives,” humans can override their programming to 

maintain a level of self-restraint, and can even develop a 

set of rules (i.e., ethics and values) to maintain civilization. 

Conventional computer programs are incapable of these 

things; however symbolic AI programs can incorporate all 

of the rules (and therefore ethics and values) of a given 

human. Also, you could train a neural network to respond 

“ethically” to given situations.  

(30) Selective awareness (filtering): Most humans have 

the ability to focus on a task while ignoring distractions 

such as extraneous noise or motion around them. They are 

also able to find images semi-obscured by camouflage or 

clutter. Conventional computer programs and symbolic AI 

programs can achieve this through pre-processing of input 

data by using signal and image processing techniques. 

Also, several types of neural networks, with their ability to 

generalize and deal with never-seen input, can perform 

very well when given “fuzzy” input [30-33].  

(31) Open to inspection: Despite many years of scientific 

advances in understanding both the biological and 

behavioral function of human brains, tracing mental 

thoughts is still less “exact” then tracing the execution of a 

conventional or symbolic-AI program. Neural networks 

however are less open to inspection than AI programs 

because of the many compromises made in changing inter-

neuron weight values during the training (learning) phase 

(i.e., to satisfy many input/desired-output pairs 

simultaneously).  

(32) Emotions, (33) Imagination, (34) Creativity, (35) 

Passion, (36) Playfulness: The ability to feel, to imagine 

and create, to have passions and ambitions, and to 

experiment through playful curiosity are still primarily 

human traits; Play also seems to have contributed to 

human evolution: “Given that the adaptiveness of behavior 

itself derives from an evolutionary process in which 

variability and play are absolutely essential …..playfulness 

is indeed not only to be enjoyed but to be accorded high 

value for its fundamental role in the success of all 



organisms, including human” [38]. No man-made device 

is yet capable of these things.  

(37) Empathy, (38) Courage, (39) Leadership: The ability 

to empathize with the feelings of others, to take risks 

including self-sacrifice for the benefit of others, and to 

display leadership qualities (e.g., vision, compassion, 

motivation of others) are still primarily human traits.  No 

man-made device is yet capable of these things. However, 

simple programmed responses to perceived human 

emotion are now possible [46].  

(40) Self-Awareness & Conscious, (41) Awareness of 

mortality: Humans can see themselves, their lives, their 

influence on others, their influence on the future, and their 

mortality. And as mentioned above when discussing 

multitasking, it takes the collective integration of many 

mental abilities to achieve self-awareness; moreover the 

human “conscious” can even lead to out-of-body 

experiences where there is a perceived disconnect between 

the physical world and the perceived world of the mind. 

The research in [45] showed the following: 

 

 Conscience lags  six seconds after related neurons 

fire 

 A virtual self outside of your body can be created 

 The virtual self can react to virtual stimuli (in a 

gaming environments). 

 There is a perceptual part of the brain where 

proprioception (awareness of your position and 

orientation in space) contributes to the creation of 

a virtual self. 

 Conscious “self-awareness” is needed for 

complex decision making and full autonomy; 

with all parts communicating. 

 

This can all be easily related to the “Pose Estimation” 

required for robot autonomy. It now seems possible that 

perhaps someday intelligent machines could become self-

aware. And becoming aware that they are not mortal 

would then be a simple realization as long as there is an 

ample supply of replacement parts. 

 (42) Group Psychology: Humans can play, work, raise 

children, and wage war as teams.  They can also 

collectively share beliefs. Networked conventional 

computer programs and intelligent machines, especially if 

implemented with parallel processing architectures, have 

the potential to implement the equivalent of group 

psychology. 

  

A significant problem to solve is multitasking manmade 

subsystems as efficiently and elegantly as the human brain. 

The degree of parallelism (DOP) needed to be comparable 

to a human brain is not yet available. Multitasking is 

typically only found in symbolic AI programs when 

written for multi-processor machines. However, since 

multitasking is a significant part of artificial neural 

networks where learning occurs between the many simple 

computational nodes, perhaps someday a MPP (Massively 

Parallel Processing)  supercomputer could be built with 

billions of nodes (like the human brain), instead of just 

thousands (to-date). It could then be subdivided into 

clusters for each mental ability (or selected groups of 

abilities) of Table 1 to implement an artificial neural 

network to rival all of the functionality of the human brain. 

 

Another hurdle to overcome in building intelligent 

machines (including fully-autonomous robots) that rival 

humans is choosing an architecture that is either 

structurally similar to, or merely produces results in a 

similar fashion to the human brain (i.e., “bottom-up” vs. 

“top-down” design). Figure 8 and 9 illustrate these models. 

Most artificial neural networks are top-down designs 

which learn and can be trained to react to external stimuli 

such that they mimic certain biological brain function. 

They learn by repeatedly applying mathematics to change 

inter-neuron connection strengths (weights) until the 

outputs converge to desired tolerances. The network is 

trained (i.e., learns) by changing the strength of 

connections such that multiple input/desired-output pairs 

are satisfied simultaneously; the final set of weights 

represents the compromises made to simultaneously satisfy 

the constraints.  A major problem in implementing this is 

that these computations require many mathematical matrix 

and vector manipulations, but are often run on typical von-

Neumann type uni-processor machines that have a “bottle-

neck” forcing non-parallel computations. SMP (Symmetric 

Multi-Processing) machines can improve performance; 

however the best machines for these calculations are MPP 

or vector-register supercomputers, or embedded 

application-specific highly parallel systems – especially 

those which can provide learning in real-time. The all-

digital vector-register neural network processor (with on-

chip learning) proposed in [34] by the author is one 

example of this. The “bottom-up” approach is to build a 

man-made system which functions like a biological brain 

at the circuit-level. This theory discussed in [14] is to build 

artificial dendritic trees as RC analog circuit elements (i.e., 

built with resistors and capacitors) that produce signals 

close to those propagating through the dendritic tree inter-

neuron connections of the human brain. Fig. 10 is a VLSI 

chip built by the author to implement this theory. It has 64 

neurons built from approximately 10,000 transistors on a 

2mm x 2mm silicon die. Even though the semiconductor 

industry continues to find ways to increase the number of 

transistors per unit area, the chip-area required to include 

billions of neurons (like that of the human brain) would 

need to be millions of times larger than a typical chip.  One 

reason for this is that our brains are three-dimensional 

whereas integrated circuits are mostly two-dimension 

(despite multiple levels of layerization). Another problem 

is connecting all of these neurons since the wire routing 

would be in mostly two dimensions. Even with several 

layers of metallization (for wires), it would be extremely 



difficult to connect billions of neurons (with each requiring 

thousands of connections to other neurons). Perhaps the 

most difficult problem to overcome with this type of 

implementation is mimicking human learning where inter-

neuron connections are not only strengthened or weakened 

during learning, but are often grown. Wires on chips need 

to be fixed, or at-best of variable resistance, and 

considering the required extensive connectivity between 

billions of neurons, this would likely take many years to be 

realized. 

 

Keeping it simple 
Since the Apollo missions of the 1960’s NASA has known 

that simplicity is extremely important  when creating 

reliably machines to send into space. The Mars robots of 

the recent decades are good examples of this. Despite 

integrating increasing complexity and autonomy, the 

following computer specifications illustrate NASA’s 

wisdom on keeping it simple: 
 

1996 “Sojourner”  

 100 kHz Intel 80C85 CPU 

 512 Kbytes of RAM 

 176 Kbytes of flash memory  

2004 “Spirit” and “Opportunity”  

 20-MHz IBM RAD6000 CPU 

 128 Mbytes of RAM 

 256 Mbytes of flash memory 

2011 “Curiosity”  

 200-MHz IBM RAD750 PowerPC 

 256 Mbytes of RAM 

 2 Gbytes of flash memory 
 

Spirit, Opportunity, and Curiosity all use the VxWorks 

REAL-TIME Operating System to run many parallel tasks 

without all of the typical storage and resource-hogging 

needs of today’s common operating systems. This 

efficiency of processing can be contrasted with present-day 

human obsessions with attempting to multitask too many 

things simultaneously. In [47] it was shown that even MIT 

students who believed they are capable of extreme 

multitasking  scored much lower than they should have on 

tasks that require focused attention. In [47], an analogy 

was made to a well trained muscle needing less energy to 

do a task; it was shown that despite much brain activity 

(distributed throughout the brain) when web-searching, a 

sample task of focused reading of a book (with much less 

overall brain activity) yielded much better test scores for 

comprehension. A “Mental Ability Filter” was created by 

the brain [47].   

 

 

 

 
 

Figure 8. “BOTTOM-UP” biological model learns by strengthening, 

weakening, or growing new connections. Stimulus is from the 

environment and other neurons. 

 

 
Figure 9. “TOP-DOWN” psychological model learns by adapting to 

minimize error. Preset stimulus is applied during learning (“training”). 

New stimulus from the environment is applied after training completed 
(i.e., to react to with ideally zero error) 

 

 

 
Figure 10.  A “Bottom-Up” Artificial Neural Network Chip. 

 (Wunderlich, 1992) 

 



Grasping in the Dark 
Robots can sometimes become overwhelmed with sensory 

information that inhibits their progress. Global path-

planners can certainly help with this problem as was the 

case in 2006 when an upload of new global path-planning 

software was needed to free the Mar’s rover from getting 

stuck due to multiple conflicting commands [12]. Another 

strategy to overcome this problem is to create “attractors” 

that virtually pull a mobile robot or robotic arm into and 

through noisy, crowded, or un-charted environments [16]. 

This concept is illustrated in Figure 11 where the robotic 

arm needs to have an educated guess where to go; else it 

becomes completely overwhelmed by obstacle avoidance 

commands repelling every elbow away from the walls of 

the enclosure.  Fully autonomous robots will be needed to 

explore distant places like Jupiter’s moon Europa, and the 

ability to “grasp in the dark” at virtual temporary goals 

could help improve the robot’s ability to explore.  

 

Conclusions and Future Research 
Robot autonomy needs to be carefully designed to protect 

life, property, and robots; however excessive constraints 

can prevent discovery, or even halt all progress. Full or 

autonomy requires maximum adaptability. A future goal 

for our autonomous mobile robots is to develop fully 

integrated local and global path planning; with complex 

environmental maps developed from data continuously 

collected from the real-time local path planner. We will 

also be investigating the “attractors” presented above for 

‘grasping in the dark” when confronted with what would 

otherwise be overwhelming obstacles. We hope to 

combine various aspects of machine intelligence while 

considering the mental abilities presented in Table 1. This 

may involve developing separate artificial neural networks 

for various mental abilities (or groupings of abilities), then 

connecting them with one “global-oversight” neural 

network to reach compromises and arbitrate conflicting 

signals. Research may then be extended to test simulated 

human brain models (Artistic, Scientific, Autistic, or 

Asperger’s). Network clusters could be separated from a 

working collective to simulate certain human conditions; 

And re-establishing connectivity in varied ways (e.g., 

optimal delays, etc.) could lead to natural and physical 

science discoveries (including robot autonomy). Future 

inter-disciplinary collaborations could relate engineering, 

computer science, psychology, and possibly even 

occupational therapy where a simulation of Sensory 

Integration” could be shown to be related to a lack 

of commutation between regions of the brain; which often 

leads to a “sensory overload” from not being able to 

process everything while attempting focused tasks; and as 

discussed above, this can be easily applied to autonomous 

robot path-planning. Possible discoveries in optimal 

combinations of localized focused thought with 

simultaneous, but not disruptive, communication between 

processing centers could be applied to machine 

intelligence algorithms. Future research may also 

investigate how sensory “noise” over time can cause 

cognitive or computing interference that can’t be filtered 

and possibly may intensify inhibition of mental or 

computing capabilities; this could be shown to be due to 

the difficulty in internalizing, isolated, and integrated noise 

into the global conscious of the human mind, or into the 

global path-planner of an autonomous robot. The ability of 

a human or machine intelligence to “compromise” may 

require special coding or even structural changes. All 

localized processing may need to communicate and settle 

to one solution despite conflicting conclusions. Localized 

frequently-reinforced processing may be resistant to 

change; especially since localized areas may perform best 

when narrowly focused without distraction. New 

communication connections may be needed. The ability to 

change (i.e. plasticity) of human and machine minds in 

autonomous robots may require new measures to ensure 

optimal learning and adaptively. Robot autonomy needs to 

be designed to be safe, but without excessive constraints 

that could prevent discovery, or even halt all progress. 

 

 
 

 
Figure 11. A robotic arm “grasping in the dark” [16] 
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