
Digital Logic Velocity Calculator
Chris Peeters, Alexander Barrow, Kelvin Jerry

Department of Engineering and Physics Elizabethtown College 2013

Acknowledgments
A Special Thanks to:

Dr.Wunderlich

Logic Design

Goal
For this project we had to create a specific digital circuit
and implement a pipeline and a finite state machine. We
also had to have the op-code that tells the circuit what to
do. When this was completed we needed to have the
program preform some type of mathematical equation.

Control Logic Op-Code Condensing the Circuit

Tests

The control logic is interprets the op-code and

tells the circuit what function to preform. The logic

also specifies which registers to take data from

and where to store it after the operations are

complete. This is the heart of the logic design.

Starting on top we can see how the logic

works. Data is taken out of the registers and

then manipulated mathematically with the up

and down counter. Then the data is stored back

into the registers.

The op-code is a type of assembly language that

is used in conjunction with the control logic.

When writing the Op-code we had to decide

what would be manipulated and where the

results are stored. Our op-code works in this

order:

• Grabs acceleration from up-counter

and stores it

• Grabs initial velocity from up-

counter and stores it

• Grabs time from down counter and

stores it

• Multiplies acceleration and time and

stores it

• Adds initial velocity to the results

and stores it

After we had a working prototype our next step was

to simplify some of the parts of the circuit into big

blocks that way the overall circuit looks cleaner. We

did this with the registers and with the status register.

Finite State Machine

To test the circuit we set the up counter to 2 for the

acceleration and 5 for the initial velocity. The down

counter would hit 4 for the time which should

produce an answer of 13. After the program ran it

did in fact produce the correct answer.

Registers Before

Registers After

