Chapter 11:

The Description of Human Motion

KINESIOLOGY

Scientific Basis of Human Motion, $11^{\text {th }}$ edition Hamilton, Weimar \& Luttgens

Presentation Created by
TK Koesterer, Ph.D., ATC
Humboldt State University

Revised by Hamilton \& Weimar REVISED FOR FYS by J. Wunderlich, Ph. D.

Objectives

- Linear \& rotary motion
- Displacement, velocity, acceleration
- Projectiles
- Kinematics to describe a motor task

Relative Motion

- At rest or in motion depends on the reference
- Sleeping passenger in a flying plane:
- At rest in reference to plane
- In motion in reference to earth

Cause of Motion

- Force is instigator of movement
- Force must be enough to overcome object's inertia, or resistance to motion
- But if judo done right, force should be minimal

Kinds of Motion

- Translatory

-Linear or
Cuvilinear

- Rotary ("angular")

Translatory Movement

- Object translates from location to location
- Rectilinear: straight-line
- Curvilinear: curved translatory movement

Fig 11.1

Fig 11.2

Translatory Circular Motion

- Curvilinear
- Object moves along circumference
- constant radius
- Force on object keeps it in circle
- if force stops, object moves in a linear path tangent to circle

Fig 11.2

Rotary ("Angular") Motion

- Levers, wheels, axles, globes, Judo players
- Measure angle of rotation
- Body parts move in an arc about a fixed point

Kinds of Motion

- BOWLERS ARM moving in Rotary ("Angular") Motion
- BALL moving in Translatory Circular Motion - then translatory linear motion when released

Fig 11.2

Combined Movement

- Combination of rotary \& translatory called general motion
- Angular motions of forearm, upper arm \& legs.
- Hand travels linearly and imparts linear force to the foil

Fig 11.4

Kinds of Motion Experienced by the Body

- Most joints are axial
- Segments undergo primarily angular motion
- Slight translatory motion in gliding joints

Fig 11.5

Kinds of Motion

Experience by the Body

- Rectilinear movement when the body is acted on by the force of gravity or a linear external force

Fig 11.7

Fig 11.6

Motion Experience by Body

- Rotary
- Parts of many Judo throws
- Translatory
- diving over someone in Judo
- General
- Judo rolls combine translation and rotation

KINEMATICS OF MOTION Linear

- Distance
- How far an object has traveled

Displacement

- Distance object moved from a reference point

Linear Kinematics

- Walk north 3 km , then east 4 km
- 7 km distance traveled
- 5 km of displacement

Fig 11.8

Speed and Velocity V

- Speed is how fast object is moving; nothing about direction of movement
- a scalar quantity

Speed and Velocity V

- Velocity involves direction as well as speed
- speed in a given direction
- rate of displacement (X,Y, and/or Z)
- a vector quantity

Acceleration \mathbf{a}

- The rate of change in velocity
- If acceleration positive, velocity will increase
- If acceleration negative, velocity will decrease

Acceleration

Fig 11.10

Section a:
v- increasing (+)
a-constant (+)

Section b:
v- constant (+)
a-zero

Section c:
v- non-linear increase (+)
a- non-constant (+)

Section d:

v- decreasing (+)
a- constant (-)

Acceleration Units

$$
\begin{aligned}
& \bar{a}=(\mathrm{m} / \mathrm{sec}) / \mathrm{sec} \\
& \overline{\mathrm{a}}=\mathrm{m} / \mathrm{sec}^{2}
\end{aligned}
$$

Uniformly

 Accelerated MotionConstant acceleration rate

- Common with freely falling objects
- Objects will accelerate at a uniform rate due to acceleration of gravity

Object projected upward will be slowed at the same uniform rate due to gravity

Acceleration of Gravity

- $32 \mathrm{ft} / \mathrm{sec}^{2}$ or $9.8 \mathrm{~m} / \mathrm{sec}^{2}$
- Velocity will increase $9.8 \mathrm{~m} / \mathrm{sec}$ every second when an object is dropped from some height

Acceleration of Gravity

- Since acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$
- after $1 \mathrm{sec}, \mathrm{V}=9.8 \mathrm{~m} / \mathrm{sec}$
- after of $2 \mathrm{sec}, \mathrm{V}=19.6 \mathrm{~m} / \mathrm{sec}$
- after of $3 \mathrm{sec}, \mathrm{V}=29.4 \mathrm{~m} / \mathrm{sec}$

Air Resistance

- Lighter objects affected more:
- may stop accelerating (feather) and fall at a constant rate
- Terminal velocity - air resistance is increased to equal accelerating force of gravity
- Object no longer accelerating, velocity stays constant
- Sky diver = approximately 120 mph (53 m/sec)

Laws of Uniformly Accelerated Motion

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& x=v_{i} t+1 / 2 a t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a x
\end{aligned}
$$

Where:
$v_{f}=$ final velocity
$v_{i}=$ initial velocity
a = acceleration
$t=$ time
x = displacement

Laws of Uniformly Accelerated Motion

- Time for an object to rise to highest point of trajectory equal to time to fall to starting point
- Upward flight is mirror image of downward
- Release \& landing velocities equal, but opposite
- Upwards velocities are positive, downward are negative

Projectiles

Objects given an initial velocity and released

- If Neglecting air resistance, gravity is only influence after release

Projectiles

- Want maximum horizontal displacement for long jumper

Projectiles

- Want maximum vertical displacement for high jumper

Projectiles

Want maximum accuracy for shooting basketball

Projectiles

Want maximum accuracy for shooting basketball

Projectiles

Gravity will

- slow upward motion
- increase downward motion
- at $9.8 \mathrm{~m} / \mathrm{sec}^{2}$

Fig 11.11

Projectiles Upward portion

Position versus Time Upward

Velocity versus Time
Upward

Acceleration versus Time
Upward

Projectiles

Downward portion

Acceleration versus Time
Downward

Projectiles

- Initial velocity at an angle of projection:
- Components
- Vertical velocity: affected by gravity
- Horizontal velocity: not affected by gravity

Fig 11.12

Projectiles with Horizontal Velocity

- If one object simply falling while another is projected horizontally, which will hit the ground first?
- Tie if air effects ignored (e.g., drag, lift)

Gravity acts on both objects equally

2 meters
$t=.64 \mathrm{~s}$
Horizontal velocity projects the object some distance from the release point

Projectiles with Vertical and Horizontal Velocities

- Case for most projectiles
- Horizontal velocity remains constant
- Vertical velocity subject to uniform acceleration of gravity

Fig 11.14

Horizontal Distance of a Projectile

Depends on

- initial velocity
- angle of projection

Angular Kinematics

- Similar to linear kinematics
- Also concerned with displacement, velocity, and acceleration
- Difference is relates to rotary rather than linear motion
- Equations similar

Angular Displacement

- Skeleton is system of levers that rotate about fixed points
- Parts near axis have displacement less than those farther away
- Units of a circle:
- Circumference = C
- Radius = r
- Constant (3.1416) $=\pi$

$$
C=2 \pi r
$$

Units of angular Displacement

Degrees:

- Used most frequently
- Revolutions:
-1 revolution $=360^{\circ}=2 \pi$ radians
Radians:
- 1 radian $=57.3^{\circ}$
- Favored by engineers \& physicists
- Required for most equations
- Symbol for angular displacement - θ (theta)

Angular Velocity
 $\omega=\theta / t$

- Rate of rotary displacement - ω (omega)
- Equal to the angle through which the radius turns divided by time
- Expressed in degrees/sec, radians/sec, revolutions/sec, or RPM (Revolutions Per Minute)

Angular Acceleration

$$
\alpha=\left(\omega_{f}-\omega_{i}\right) / t
$$

- α (alpha) is the rate of change of angular velocity and expressed by above equation.
- ω_{f} is final velocity
- ω_{i} is initial velocity

Angular Acceleration

- ω_{a} is $25 \mathrm{rad} / \mathrm{sec}$
- ω_{b} is $50 \mathrm{rad} / \mathrm{sec}$
- Time lapse $=0.11 \mathrm{sec}$

$$
\begin{aligned}
& \alpha=\omega_{f}-\omega_{i} / t \\
& \alpha=(50-25) / 0.11 \\
& \alpha=241 \mathrm{rad} / \mathrm{sec} / \mathrm{sec}
\end{aligned}
$$

Velocity increases by 241 radians per sec each second

Relationship Between

Linear and Angular Motion

- A, B, and C have same angular displacement and velocity; but different linear displacements and velocities

Fig 11.17

Relationship Between Linear and Angular Motion

Linear displacements of A, B, and C :

$$
x=\theta r
$$

where r is the radius (i.e., distance from P)

Fig 11.17

Relationship Between Linear and Angular Motion

Linear velocities of A, B, and C :

$$
v=\omega r
$$

where r is the radius (i.e., distance from P)

Fig 11.17

