<u>Chapter 11:</u> The Description of Human Motion

KINESIOLOGY Scientific Basis of Human Motion, 11th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University

Revised by Hamilton & Weimar <u>REVISED FOR FYS</u> by J. Wunderlich, Ph.D.

Objectives

- Linear & rotary motion
- Displacement, velocity, acceleration
- Projectiles
- Kinematics to describe a motor task

Relative Motion

- At rest or in motion depends on the reference
- Sleeping passenger in a flying plane:
 - At rest in reference to plane
 - In motion in reference to earth

Cause of Motion

- Force is instigator of movement
- Force must be enough to overcome object's inertia, or resistance to motion
 - But if judo done right, force should be minimal

Kinds of Motion

Translatory Linear or Cuvilinear

Rotary ("angular")

Translatory Movement
 Object translates from location to location

– Rectilinear: straight-line

Curvilinear: curved translatory movement

Fig 11.1

Translatory Circular Motion

- Curvilinear
- Object moves along circumference – constant radius
- Force on object keeps it in circle
 if force stops, object moves in a linear path tangent to circle

Rotary ("Angular") Motion

- Levers, wheels, axles, globes, Judo players
- Measure angle of rotation
- Body parts move in an arc about a fixed point

Kinds of Motion

- BOWLERS ARM moving in Rotary ("Angular") Motion
- BALL moving in Translatory Circular Motion
 then translatory linear motion when released

Combined Movement

- Combination of rotary & translatory called general motion
- Angular motions of forearm, upper arm & legs.
- Hand travels linearly and imparts linear force to the foil

Kinds of Motion Experienced by the Body

- Most joints are axial
 Segments undergo primarily angular motion
- Slight translatory motion in gliding joints

Kinds of Motion Experience by the Body

 Rectilinear movement when the body is acted on by the force of gravity or a linear external force

Fig 11.6

Motion Experience by Body

Rotary

- Parts of many Judo throws
- Translatory
 - diving over someone in Judo
- General

Judo rolls combine translation and rotation

KINEMATICS OF MOTION Linear

Distance

- How far an object has traveled
- Displacement
 - Distance object moved <u>from a reference</u> <u>point</u>

Linear Kinematics

Walk north 3 km, then east 4 km

• 7 km <u>distance</u> traveled

5 km of <u>displacement</u>

Speed and Velocity

 Speed is how fast object is moving; nothing about direction of movement
 a scalar quantity

Speed and Velocity V Velocity involves direction as well as speed speed in a given direction rate of <u>displacement</u> (X, Y, and/or Z) a vector quantity

Acceleration **a**

- The rate of change in velocity
- If acceleration positive, velocity will increase
- If acceleration negative, velocity will decrease

Acceleration

Acceleration Units

 $\overline{a} = (m/sec) / sec$ $\overline{a} = m/sec^2$

Uniformly Accelerated Motion

- Constant acceleration rate
- Common with freely falling objects
 - Objects will accelerate at a uniform rate due to acceleration of gravity
- Object projected upward will be slowed at the same uniform rate due to gravity

Acceleration of Gravity

32 ft/sec² or 9.8 m/sec²

 Velocity will increase 9.8 m/sec every second when an object is dropped from some height

Acceleration of Gravity

- Since acceleration due to gravity is 9.8 m/sec²
 - after 1 sec, V = 9.8 m/sec
 - after of 2 sec, V = 19.6 m/sec
 - after of 3 sec, V = 29.4 m/sec

Air Resistance

Lighter objects affected more:

- may stop accelerating (feather) and fall at a constant rate
- <u>Terminal velocity</u> air resistance is increased to equal accelerating force of gravity
 - Object no longer accelerating, velocity stays constant
 - Sky diver = approximately 120 mph (53 m/sec)

Laws of Uniformly Accelerated Motion

 $V_f = V_i + at$

 $X = V_i t + \frac{1}{2} at^2$

$$V_f^2 = V_i^2 + 2ax$$

Where: $V_f = final \ velocity$ $V_i = initial \ velocity$ a = acceleration t = timex = displacement

Laws of Uniformly Accelerated Motion

- Time for an object to rise to highest point of trajectory equal to time to fall to starting point
- Upward flight is mirror image of downward
- Release & landing velocities equal, but opposite
- Upwards velocities are positive, downward are negative

- Objects given an initial velocity and released
- If Neglecting air resistance, gravity is only influence after release

 Want maximum horizontal displacement for long jumper

 Want maximum vertical displacement for high jumper

Want maximum accuracy for shooting basketball

Want maximum accuracy for shooting basketball

Gravity will – slow upward motion – increase downward motion – at 9.8 m/sec²

Object decelerates

Object accelerates

Projectiles Upward portion

Time (sec)

-8 -10 -12

Projectiles Downward portion

Initial velocity at an angle of projection:

- Components
 - Vertical velocity: affected by gravity.
 - Horizontal velocity: not affected by gravity

Projectiles with Horizontal Velocity

- If one object simply falling while another is projected horizontally, which will hit the ground first?
 - Tie if air effects ignored (e.g., drag, lift)

Projectiles with Vertical and **Horizontal Velocities** Case for most projectiles Horizontal velocity remains constant Vertical velocity subject to uniform acceleration of gravity

Horizontal Distance of a Projectile

Depends on
 – initial velocity
 – angle of projection

Angular Kinematics

- Similar to linear kinematics
- Also concerned with displacement, velocity, and acceleration
- Difference is relates to rotary rather than linear motion
- Equations similar

Angular Displacement

- Skeleton is system of levers that rotate about fixed points
- Parts near axis have displacement less than those farther away
- Units of a circle:
 - -Circumference = C
 - Radius = r
 - Constant (3.1416) $= \pi$

 $C = 2\pi r$

Units of angular Displacement

- Degrees:
 - Used most frequently
- Revolutions:
 - 1 revolution = $360^\circ = 2\pi$ radians
- Radians:
 - $1 radian = 57.3^{\circ}$
 - Favored by engineers & physicists
 - Required for most equations
- Symbol for angular displacement - θ (theta)

Angular Velocity

$\omega = \theta / t$

- Rate of rotary displacement - ω (omega)
- Equal to the angle through which the radius turns divided by time
- Expressed in degrees/sec, radians/sec, revolutions/sec, or RPM (Revolutions Per Minute)

Angular Acceleration

 $\alpha = (\omega_f - \omega_i)/t$

α (alpha) is the rate of change of angular velocity and expressed by above equation.
 - ω_f is final velocity

 $-\omega_i$ is initial velocity

Angular Acceleration

- ω_a is 25 rad/sec
- ω_b is 50 rad/sec
- Time lapse = 0.11 sec

 $\alpha = \omega_f - \omega_i / t$ $\alpha = (50 - 25) / 0.11$ $\alpha = 241 \text{ rad/sec/sec}$

Velocity increases by 241 radians per sec each second Relationship Between Linear and Angular Motion
A,B, and C have same angular displacement and velocity; but different linear displacements and velocities

Relationship Between Linear and Angular Motion

Linear displacements of A,B, and C:

 $\mathbf{X} = \mathbf{\theta}\mathbf{r}$

where *r* is the radius (i.e., distance from P)

Relationship Between Linear and Angular Motion

Linear velocities of A,B, and C:

 $v = \omega r$

where *r* is the radius (i.e., distance from P)

